• 제목/요약/키워드: Aerodynamics model

검색결과 207건 처리시간 0.022초

실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델 (A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters)

  • 박수완;유관우;김은주;백낙훈
    • 정보처리학회논문지A
    • /
    • 제14A권5호
    • /
    • pp.255-262
    • /
    • 2007
  • 물리 기반의 헬리콥터 시뮬레이션은 항공학, 항공역학 등의 분야에서 많이 연구되어 오고 있으나, 복잡한 수식, 많은 계산량 등으로 인해 사실성과 속도를 동시에 추구하는 컴퓨터 그래픽스 분야에는 적용하기 어려웠다. 본 논문에서는 컴퓨터 그래픽스 분야에 적용할 수 있도록 구현하기 쉽고, 실시간 헬리콥터 시뮬레이션을 가능하게 하는 헬리콥터 회전 깃(rotor blades)의 역학적 모델을 제안한다. 헬리콥터는 회전 깃과 공기의 충돌로 발생한 힘을 통해 운동하는데, 이는 유체와 강체가 충돌해서 발생하는 충돌력으로 설명할 수 있다. 이를 근거로 근사화한 회전 깃의 역학적 모델을 도입하면, 기존의 강체 시뮬레이션 방법으로 유체와 강체가 충돌하는 헬리콥터의 움직임을 실시간 시뮬레이션 할 수 있다. 본 논문에서는 실시간 계산이 가능하도록 뉴턴의 양력 계산법을 응용하여 회전 깃의 움직임으로 발생하는 힘을 구한다. 본 논문이 제안하는 방법에 따라 구현된 프로토타입 시스템은 실제와 유사한 헬리콥터 시뮬레이션을 실시간에 처리할 수 있음을 보였다.

중형 차량의 외부 유동특성에 관한 연구 (Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle)

  • 이동렬
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method

  • Son, Seok-Ho;Choi, Byung-Lyul;Jin, Won-Jin;Lee, Yung-Gyo;Kim, Cheol-Wan;Choi, Dong-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.423-431
    • /
    • 2016
  • In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluid-structure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of $C_L=1.0$. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape.

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.

고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구 (A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack)

  • 김현섭;권용훈;김희동;손명환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

수치해석을 통한 철도차량 전두부의 공기저항 해석 (Analysis of Drag Force on Leading car using CFD)

  • 고태환;김정석;구동회
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.132-138
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed of 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

공동을 지나는 비정상 유동에 대한 LES 해석 (LES for unsteady flow past n cavity)

  • 임종수;신동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF