• Title/Summary/Keyword: Aerodynamics characteristics

Search Result 189, Processing Time 0.031 seconds

월드컵 공인구와 한국 축구 공인구 사이의 기초 공력특성 비교 (Comparison of the basic Aerodynamics between the World Cup Official Ball and Korean Soccer Balls)

  • Sungchan Hong
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.63-70
    • /
    • 2024
  • Objective: This study aims to compare the basic aerodynamic characteristics of the official Qatar World Cup soccer ball with those of the official Korean soccer balls. Method: In this study, wind tunnel experiments were conducted to compare the fundamental aerodynamic properties of two commonly used domestic soccer balls, the Star and Nassau, with the Al Rihla, the official ball of the 2022 Qatar World Cup. Results: The findings revealed that the Nassau soccer ball exhibited changes in aerodynamic characteristics depending on its orientation, particularly at low speeds (below 15 m/s), while the Al Rihla showed variations in aerodynamic characteristics at medium to high speeds (15 m/s to 35 m/s) based on its orientation. Furthermore, the results of lift and side force variations indicated that the Star soccer ball exhibited larger changes compared to other soccer balls, suggesting that it may exhibit the most irregular flight path during strong shots (around 30 m/s or approximately 100 km/h). However, there were no differences in aerodynamics observed among the soccer balls in the medium-speed range (20~25 m/s). Conclusion: The comparison of aerodynamics between the Korean soccer balls and the most recently used World Cup official ball showed that, while the Korean balls exhibited slightly greater changes in lift and side forces compared to the World Cup ball, there were no significant differences in most of the aerodynamic characteristics.

가속 유동장에서 발생하는 익형의 공력특성에 관한 연구 (Study of the Aerodynamic Characteristics of an Aerofoil in Accelerating Free Streams)

  • 김태호;김희동;손명환;이명호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2115-2120
    • /
    • 2003
  • Many flight bodies are essentially imposed in gradually accelerating and decelerating free streams during taking-off and landing processes. However, the wing aerodynamics occurring in such a stream have not yet been investigated in detail. The objective of the present study is to make clear the aerodynamic characteristics of an aerofoil placed in the accelerating and decelerating free stream conditions. A computational analysis is carried out to solve the unsteady, compressible, Navier-Stokes equations which are discretized using a fully implicit finite volume method. Computational results are employed to reveal the major characteristics of the aerodynamics over the gradually accelerating aerofoil wings.

  • PDF

커버 형상을 고려한 고속전철 팬터그래프 공력특성의 수치해석적 연구 (INVESTIGATION FOR THE AERODYNAMIC CHARACTERISTICS OF HIGH SPEED TRAIN PANTOGRAPH WITH COVER)

  • 강형민;김철완;조태환;김동하;윤수환;권혁빈
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.18-24
    • /
    • 2012
  • The aerodynamic performance of the pantograph on a high speed train was compared for different pantograph covers which are designed to block the aero-acoustic noise from the pantograph. For the study, two types of cover are designed: wedge and cone types. The lift force of pantograph with cover was compared with the force of pantograph only. The comparison clarified that the cone type cover increases the sideslip angle of the flow and decreases the lift force considerably. However, the wedge type cover changes the flow direction upward and increases the lift force of the pan head. This increment of lift force compensates the decrement of lift force caused by the blocking of the flow into the pantograph lower frame due to cover. Therefore, in case of the wedge type cover, the overall lift force changes slightly compared with the cone type cover.

Wind Tunnel Test of the Straight and Forward Swept Canards

  • Chung, Jin-Deog;Sung, Bong-Zoo;Lee, Jang-Yeon;Kim, Eung-Tai
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.19-25
    • /
    • 2003
  • A low speed wind tunnel test for the canard airplane model was conducted in KARI LSWT. To measure the required level of accuracy, the image system was applied for all elevator deflection and different canard incidence conditions. By doing so, the difference in aerodynamic characteristics between the forward swept and straight canards can be precisely evaluated, and the pros and cons of both canards arrangements can be discussed. Compared with both canard configurations at the same incidence angle setting, the straight canard has benefits in lift and drag, and the slope of pitching moment increases more moderately than the forward swept canard. The listed data and discussion would be useful to whom wants to design a canard airplane.

이동충격파를 추월하는 발사체의 공기역학 (Aerodynamics of the Projectile Overtaking a Moving Shock Wave)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.299-302
    • /
    • 2007
  • The aerodynamics of a projectile overtaking a moving shock wave is analyzed using a chimera scheme. The flow field characteristics for various shock wave Mach number and projectile masse are investigated. the unsteady forces acting on the projectile for both supersonic and impossible overtaking conditions are computed in order to analyze the aerodynamic characteristics of the projectile. It is seen that the projectile Mach number significantly affects the flow fields for both supersonic and impossible overtaking. Unsteady drag is influenced by the overtaking conditions. The unsteady drag coefficient is the highest for the impossible overtaking condition.

  • PDF

지면효과익의 공기역학특성을 위한 모사실험장치 개발에 관한 연구 (Simulator Development for the Aerodynamic Characteristics of a Wing in Ground)

  • 김태호;김희동;이명호;손명환;촌수남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1724-1729
    • /
    • 2003
  • A new ground transportation system is often simulated by the wing in ground effect(WIG). Recently, several kinds of experimental and computational studies are being carried out to investigate the WIG aerodynamic characteristics which are of practical importance to develop the new ground transportation vehicle system. These works are mainly based on conventional wind tunnel tests, but many problems associated with the WIG aerodynamic characteristics can not be satisfactorily resolved. In order to develop the new ground transportation vehicle system the WIG should be further investigated. To do this, it is necessary to develop a s imulator appropriate to the WIG aerodynamics. The objective of the present study is to clarify the aerodynamic characteristics of the WIG and to develop a new experimental test rig for the investigation of the WIG aerodynamics. Some preliminary experiments are performed to investigate the usefulness of the WIG simulator.

  • PDF

십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구 (An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute)

  • 이창구;김범수
    • 한국항공우주학회지
    • /
    • 제36권7호
    • /
    • pp.628-633
    • /
    • 2008
  • 십자형 낙하산은 원형 낙하산에 비해 제작상의 이점과 비용상의 이점이 있지만, 비정상 상태의 조건에 대해 많은 제약을 가지고 있다. 본 연구는 십자형 낙하산의 단점을 개선하여 더 나은 형태의 낙하산을 개발하는데 목적을 두고 있으며, Reefing을 통해 이러한 단점들을 개선 할 수 있을 것이라 기대하고 있다. 공력 특성 중에 낙하산의 성능에 가장 크게 작용하는 항력, 안정성, 진동에 대해 풍동 시험을 진행 하였으며, Reefing 효과로 인해 변화되는 낙하산의 형태와 성능들에 대해 연구 할 수 있었다.공력 계수를 얻기 위한 풍동시험은 6분력 피라미달 밸런스와 전방 고정부에 설치된 로드셀에 의해 측정이 되었다. 4개의 십자형 낙하산을 제작하였고, 각각의 값들을 비교하였다. Reefing line ratio에 따라 공력계수들의 변화를 알 수 있었다. 또한 reefing 효과에 따라 separation edge가 발생되어 십자형 낙하산의 안전성 향상을 확인할 수 있었다. 본 연구를 통해 기존 십자형 낙하산의 단점인 안정성을 향상시켜 다양한 분야에서 새로운 십자형 낙하산이 사용될 것이라 기대된다.

지면효과익을 지나는 가/감속 유동의 공력특성에 관한 실험적 연구 (An Experimental Study of Aerodynamic Characteristics of the WIG under Accelerating and Decelerating Flows)

  • 김태호;윤복현;김희동;견촌수남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1939-1944
    • /
    • 2004
  • Recently, several kinds of experimental and computational studies are being carried out to investigate the WIG aerodynamic characteristics which are of practical importance to develop the new ground transportation vehicle system. These works are mainly based upon conventional wind tunnel tests, but many problems associated with the WIG aerodynamic characteristics cannot be satisfactorily resolved due to the wind tunnel blockage effects or string problems to support the test object. To do this, it is necessary to develop a novel simulator appropriate to the WIG aerodynamics. The objective of the present study is to clarify the aerodynamic characteristics of a new developed WIG simulator, which is able to imitate real WIG flow circumstances such as gradually decelerating and accelerating flows.

  • PDF

Aero-Optical Diagnostic Technique for the Hypersonic Boundary Layer Transition on a Flat Plate

  • Li, Ruiqu;Gong, Jian;Bi, Zhixian;Ma, Handong
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.6-9
    • /
    • 2015
  • A new cross disciplinary conception of transitional aero-optics is built up during analyzing and measuring the linkage between the hypersonic boundary layer transition on a flat plate and the jittering characteristics of the small-aperture beam through that boundary layer. Based on that conception, the Small-Aperture Beam Technique (SABT) and high-speed Imaging Camera System (ICS) used in aero-optical studies are considered as new techniques for the assessment of the hypersonic transition in the boundary layer on a flat plate. In the FD-20 gun tunnel, for the free stream parameters with Mach number of 8 and unit Reynolds number of $1{\times}10^7$ (1/m), those two optical techniques are used to measure the jitter of the small-aperture beam. At the same free stream parameters, the distribution of the heat transfer along the centerline of the flat plate is also measured by the thin film resistance gauge technique. The results show the similarity of the increase trend between the heat transfer and the jitter of the small-aperture beam in the transitional region. It helps us to surmise that it may be feasible to diagnose the transition in a hypersonic boundary layer on a flat plate by means of those above optical techniques.