• Title/Summary/Keyword: Aerodynamic properties

Search Result 131, Processing Time 0.029 seconds

Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials (유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험)

  • Goo, N.-S.;Yoo, K.-J.;Shin, Y.-S.;Lee, Y.-H.;Cheong, H.-Y.;Kim, B.-H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.76-82
    • /
    • 2005
  • Cable fairings of guided missiles are generally used for protection of electric cables under aerodynamic heating and mechanical loading. The stress distributions between a cable fairing and missile main body along a cable fairing are necessary for its design. In this paper, a method for bonding stress and strength analysis of a cable fairing has been investigated and its computer program developed. Tensile and three-point bending tests of generally used bonding materials were also conducted to supply basic material properties for design of cable fairings.

An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle (고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구)

  • Chun, Hyung-Geun;Ryu, Dong-Guk;Lee, Jae-Woo;Kim, Sang-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Na, Deokhwan;You, Younghyun;Jung, Sung N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.165-173
    • /
    • 2017
  • The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

Study on the Performance Analysis of an Axial-Type Turbine with Steam Injection (증기가 분사된 축류형 터빈의 성능해석에 관한 연구)

  • Cho, Soo-Yong;Kim, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.28-36
    • /
    • 2001
  • Performance analysis is conducted on an axial-type turbine which is used for fire extinction by injecting water or steam into the turbine. Loss models developed by Hacker and Okapuu are applied for predicting the performance of turbine. Pressure loss generated through a turbine is converted to the thermal efficiency, and thermal and gas properties are calculated within a turbine passage. Total-to-total efficiency, total-to-static efficiency, static temperature at the exit of turbine, output power, flow coefficient, blade loading coefficient, and expansion ratio are predicted with changing the amount of injected steam and the rotational speed. The 74 kW class gas turbine developed at KIMM is chosen for performance analysis. The 74 kW class turbine consists of 1 stage like a current developing gas turbine for fire extinction. Water or steam is injected at the end of combustor, and results show that efficiency and output power are dependent on the temperature of injected water or steam and the static temperature at the exit is decreased.

  • PDF

Numerical analysis for the development of a Mixed-flow In-line duct fan with a high performance (고성능 사류식 In-line duct fan의 개발을 위한 전산해석)

  • Kim, Sung-Kon;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.604-609
    • /
    • 2001
  • This numerical analysis uses the lifting surface method and frequency-domain panel method based on the linear compressible aerodynamic theory. Increased knowledge of flow conditions within mixed-flow fan should indicates means of improving performance of these turbomachines. Thus, only an approximate solution is obtained whose prime intent is to recognize the most significant characteristics of the "ideal" geometry. For a given set of operating condition, the flow conditions within mixed-flow fan depend on the geometry of the machine (three-dimensional flow effects) and on the properties of the fluid. But most treatments of the problem have been concerned with the two-dimensional flow effects for incompressible, non-viscous fluids. Interest in the field of mixed-flow fan resulted in the undertaking of a program to develop reliable design procedures that would avoid the need for lengthy development work.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Combustion Generated Fine Particles, Trace Metal Speciation, and Health Effects

  • Linak, William P.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.195-195
    • /
    • 2003
  • Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 m, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Transition metals are of particular interest due to the results of a number of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal, residual fuel oils, sewage sludge, and other combusted fuels and wastes. This lecture will review results from multi-di sciplinary studies being conducted at EPA and elsewhere examining the physical, chemical, and toxicological characteristics of combustion generated particles. The research describes how collaborative work between combustion engineers and health scientists can provide insight on how combustion processes affect particle properties and subsequent health effects as measured by a combination of in-vitro and in-vivo studies using a variety of animal models. The focus of this lecture is on the interdisciplinary approach required to address the problem. Difficulties are discussed. Engineering aspects involved in this approach are described in detail. Physical and chemical characterizations are performed using a variety of analytical approaches including new techniques of x-ray absorption fine structure (XAFS) spectroscopy and x-ray absorption near-edge structure (XANES) deconvolution of these spectra to gather metal speciation information.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Study on the Physical, Mechanical and Aerodynamic Properties of Peanut Pods (땅콩 자실의 물리적, 기계적 및 공기역학적 성질에 관한 연구)

  • 김명호;박승제;노상하
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.141-150
    • /
    • 1995
  • 땅콩을 대상으로 하는 각종 농산가공기계의 개발 및 최적 작동에 필요한 땅콩 자실의 물리적, 기계적 및 공기 역학적 성질에 대한 연구가 수행되었다. 영호, 올, P.I. 314817의 3 가지 품종에 대해 땅콩 자실의 형상, 각부 칫수, 진밀도, 산물밀도 및 종실율이 측정되었으며, 땅콩자실에 대해 압축실험을 실시함으로써 자실이 파괴될 때의 힘, 변형량, 그리고 단위 체적당 최대 흡수 에너지인 터프니스 계수를 측정하여 기계적 성질로서 제시하였다. 공기 역학적 성질로서는 땅콩 자실과 종실의 종말속도 및 항력계수가 측정되었다. 1. 땅콩 자실의 기하학적 형상은 수원체로 모형화할 수 있었다. 2. 진밀도는 땅콩 자실의 경우는 515-620 $kg/m^3$, 종실의 경우는 960-1,090 $kg/m^3$, 의 값을 보였다. 3. 대합면이 수평인 자세에서의 파괴력은 영호가 61.9 N, P.I. 314817은 71.5 N, 올 땅콩은 84.8 N였으며, 터프니스 계수는 각각 30, 43, 72 kN-$m/m^3$, 의 값을 보였다. 모든 품종과 함수율에서 파괴력과 터프니스 계수는 대합면이 수직인 자세에서보다 수평자세에서 더 큰 값들을 보였다. 4. 땅콩 자실과 종실의 평균 종말속도는 각각 8.7-9.9 m/s, 10.0-11.6 m/s 범위였다. 종말속도는 진밀도와 직선적인 관계가 있었으며 품종과 형상에 따른 뚜렷한 종말속도의 차이는 보이지 않았다.

  • PDF

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.