• Title/Summary/Keyword: Aerodynamic noise

Search Result 367, Processing Time 0.027 seconds

Gust Response Alleviation of a Three-dimensional Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 3차원 유연날개 돌풍응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.220-225
    • /
    • 2013
  • In this study, active control system using sliding mode control method is presented to achieve the gust response alleviation of a three-dimensional flexible wing model. For this purpose, aeroservoelastic model which is composed of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. The aerodynamic force generated by the motion of a trailing edge control surface of a flexible wing is made use of as control means. An active control system combining state feedback sliding mode controller and state estimator based on measured responses such as wing tip acceleration and wing root strain is designed for gust response alleviation of a flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under gust loading conditions.

  • PDF

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

Aeroacoustic Computation of Cavity Flow in Self-Sustained Oscillations

  • Koh, Sung-Ryong;Yong Cho;Young J. Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.590-598
    • /
    • 2003
  • A computational aero-acoustic (CAA) method is used to predict the tonal noise generated from a cavity of automobile door seals or gaps at low flow Mach numbers (A$\_$$\infty$/=0.077 and 0.147) In the present method, the acoustically perturbed Euler equations are solved with the acoustic source term obtained from the unsteady incompressible Navier-Stokes calculations of the cavity flow in self-sustained oscillations. The aerodynamic and acoustic fields are computed for the Reynolds numbers based on the displacement thickness, Re$\_$$\delta$*/=850 and 1620 and their fundamental mode characteristics are investigated. The present method is also verified with the experimentally measured sound pressure level (SPL) spectra.

A Study on the Reduction of Pulsations in a 3/4 Open Jet Wind Tunnel (3/4 Open Jet 실차풍동에서의 Pulsation 감소에 관한 연구)

  • Kim Moo-Sang;Kee Jung-Do;Lee Jung-Ho;Jang Jin-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.839-842
    • /
    • 2002
  • Some open jet wind tunnels have been operating under limitations due to large pressure fluctuations at some wind tunnel speeds. The Hyundai Aero-acoustic full scale Wind Tunnel (HAWT), which was completed in 1999, shows that most of the specifications were fulfilled but wind tunnel pulsations at some wind speeds were observed. Hyundai Motor Company started the wind tunnel modification in order to solve this problem in 2001. After the modification work the amplitude of pressure fluctuation was reduced and below required level over full wind speed range. Aero-acoustic performance, e.g. background noise, as well as aerodynamic performance were improved after this work.

  • PDF

Experimental Observation of New Jumping Phenomena in the Pendulum System and Its Analytical Approach (진자 시스템에서의 새로운 도약 현상의 실험적 관측과 이론적 해석)

  • 최동준;정완섭;김수현
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 1996
  • This paper introduces a newly designed pendulum system that enables the more accurate boservation of dynamic behaviour arising from both horizontal and vertical(i.e. two dimension) excitation. First, experiments were carried out to examine the frequency responses of the devised pendulum system. Interestingly, experimental results for the three excitation angles of 22, 32 and 48 degree show 'new' jump phenomena. For the further understanding of these phenomena, experimental investigationhas been made to identify the equation of motion of the pendulum system from experimental data. This attempt has revealed that the viscous, coulomb and aerodynamic damping factors are involved in the equation of motion. By applying the Ritz averaging method to the equation, it becomes apparent that the jumping phenomena of the pendulum system in this work is more theoretically understood.

  • PDF

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

헬리콥터 테일팬용 팬-덕트의 공력소음해석 및 소음저감연구

  • Chung, Ki-Hoon;Kang, Hee-Jung;Kim, Hae-Dong;Hwang, Chang-Jeon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.45-55
    • /
    • 2004
  • In this study, a time marching free wake method was used for the aerodynamic analysis and the boundary element method was used for the aeroacoustic analysis of the Tail Fan, respectively. In addition, variations of blades position in duct were performed and the aeroacoustic analysis shows a marginal improvement in noise level.

  • PDF

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Studies on Voice Changes Associated with Alcohol Intake (음주에 따른 음성 변화에 대한 고찰)

  • Kim, Jung-Hyun;Yoon, Je-Hwan;Cho, Hyung-Ho;Cho, Yeon;Cho, Jae-Sik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.13 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • Background and Objectives : It has been pointed out that alcohol intake in human beings induces changes in voice register and maximum phonation time. These changes supposedly result from injection of the vibratory vocal folds. The purpose of this study was to clarify the voice changes associated with alcohol intake and the changes of laryngeal mucosa. Materials and Methods : The subjects included 29 volunteers, including 20 men and 9 women ranging in age from 22 to 31 years. Alcohol intake was accomplished by oral administration of 23% soju 1 bottle (255cc). Serum alcohol concentration levels were evaluated hourly for 3 h after ingestion of alcohol. Seven measurements were performed at pre-alcohol intake and post-alcohol intake hourly : fundamental frequency, jitter, shimmer, noise to harmonic ratio as the acoustic analysis, maximal phonation time, mean flow rate, and subglottal pressure as the aerodynamic analysis. The changes of laryngeal mucosa were evaluated by flexible laryngoscope at each measurement. Results : By comparing the acoustic and aerodynamic data and laryngeal mucosa before and after alcohol intake, there were not remarkable changes (p>0.05). Conclusion : The voice and laryngeal mucosa have not remarkably changed according to alcohol concentration in this study. Furthermore studies on the voice change induced by multiple alcohol concentrations are required.

  • PDF

Aerodynamic and Structural Design of A High Efficiency Small Scale Composite Vertical Axis Wind Turbine Blade (복합재가 적용된 고효율 소형 수직축 풍력터빈 블레이드의 공력 설계 및 구조 설계에 관한 연구)

  • Gong, Chang-Duk;Lee, Ha-Seung;Kim, In-Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.758-765
    • /
    • 2011
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class blade design of vertical axis wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. For this wind turbine a high efficiency and low noise turbine blade was designed with the proposing aerodynamic design procedure, and a light composite structure blade. Structural analyses were performed using the Finite Element Method and fatigue life of the designed blade is estimated. Finally, in order to check its performance, the manufactured blade was tested by using truck and the results of test was good with respect to its analysis result.