• Title/Summary/Keyword: Aerodynamic noise

Search Result 367, Processing Time 0.03 seconds

Combustion Noise Characteristics in Gas and Liquid Flames (가스 및 분무화염의 연소소음 특성에 관한 실험연구)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

Experimental Analysis of Flow Fields inside Intake Heads of a Vacuum Cleaner

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.894-904
    • /
    • 2005
  • The flow structure inside the intake head greatly affects the working efficiency of a vacuum cleaner such as suction power and aero-acoustic noise. In this study, the flow inside intake heads of a vacuum cleaner was investigated using qualitative flow visualization and quantitative PIV (Particle Image Velocimetry) techniques. The aerodynamic power, suction efficiency and noise level of the intake heads were also measured. In order to improve the performance of the vacuum cleaner, inner structure of the flow paths of the intake head, such as trench height and shape of connection chamber were modified. The flow structures of modified intake heads were compared with that of the original intake head. The aero-acoustic noise caused by flow separation was reduced and the suction efficiency was also changed due to flow path modification of intake head. In this paper, the variations of flow fields for different intake heads are presented and discussed together with results of aerodynamic power, suction efficiency and noise level.

Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan (축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발)

  • Chung, Dong-Kyu;Hong, Soon-Seong;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

Parametric Design of Axial Fan for Air-Conditioning Unit in terms of Aerodynamic Performance and Noise Level (공조용 축류홴 설계 및 설계변수에 따른 성능과 소음비교)

  • Lee, Seung-Jin;Choi, Go-Bong;Cho, Hong-Jun;Song, Woo-Seog;Lee, Seung-Bae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2010
  • Axial fans for an air-conditioning unit are designed to equip the system with an expected flow-rate and low noise level by applying the blade design method of multi-sectioning and local camber generation. In this study, the distributions of chord length, stagger angle, and camber angle are globally and locally determined for the given specific speed, which is considered to be relatively high. The mock-up fans are observed to satisfy the aerodynamic performance and the noise level for the system simultaneously and discussed in terms of local flow patterns related to the emitted noise.

Stability Evaluation on Aerodynamics of High Speed Railway Train (공력에 의한 HEMU-400x 고속열차의 주행안정성 평가)

  • Choi, J.H.;Park, T.W.;Sim, K.S.;Kwak, M.H.;Lee, D.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.244-252
    • /
    • 2012
  • Recently, the speed of a train has been increased. So the trains are being exposed to wind more severely than before. Because of the operation of high speed trains and lightweight of the train, risks of train derailment have being increased. In this study, aerodynamic effects of a newly designed high speed train, HEMU-400x, are evaluated. For aerodynamic effect evaluation, analysis method is selected by examining the safety standards for high speed train. The condition of aerodynamic effects is selected by adverse effect conditions. In order to calculate $C_s$ coefficients, numerical analysis is conducted. Using $C_s$ coefficients, the side force is calculated. Through dynamics analysis, derailment and wheel unloading are obtained. Using these results, derailment evaluation is performed.

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

Dynamic Characteristics Research of DVD Disk due to Disk-Wall Gap (간격 변화에 따른 DVD 디스크의 동특성 연구)

  • 임효석;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1095-1100
    • /
    • 2003
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of DVD disks are investigated in this paper. The experimental results are compared with the theoretical analyses where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments are performed using a vacuum chamber and DVD disks rotating in vacuum, open and enclosure with several different gaps between disk and wall. The following three results are given. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency decreases as the disk-wall gap is decreased. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF