• Title/Summary/Keyword: Aerodynamic drag coefficient

Search Result 175, Processing Time 0.032 seconds

Aerodynamics of an intercity bus

  • Sharma, Rajnish;Chadwick, Daniel;Haines, Jonathan
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.257-273
    • /
    • 2008
  • A number of passive aerodynamic drag reduction methods were applied separately and then in different combinations on an intercity bus model, through wind tunnel studies on a 1:20 scale model of a Mercedes Benz Tourismo 15 RHD intercity bus. Computational fluid dynamics (CFD) modelling was also conducted in parallel to assist with flow visualisation. The commercial CFD package $CFX^{TM}$ was used. It has been found that dramatic reductions in coefficient of drag ($C_D$) of up to 70% can be achieved on the model using tapered and rounded top and side leading edges, and a truncated rear boat-tail. The curved front section allows the airflow to adhere to the bus surfaces for the full length of the vehicle, while the boat-tails reduce the size of the low pressure region at the base of the bus and more importantly, additional pressure recovery occurs and the base pressures rise, reducing drag. It is found that the CFD results show remarkable agreement with experimental results, both in the magnitude of the force coefficients as well as in their trends. An analysis shows that such a reduction in aerodynamic drag could lead to a significant 28% reduction in fuel consumption for a typical bus on intercity or interstate operation. This could translate to a massive dollar savings as well as significant emissions reductions across a fleet. On road tests are recommended.

Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics (전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정)

  • Hong, Young-Kil
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface (Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향)

  • 박종수;최병대;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

The effect of aerodynamic characteristics on the insect wing tip trajectory in hovering flight (정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성)

  • Cho, Hun-Kee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1441-1445
    • /
    • 2008
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing kinematics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall effect.

  • PDF

Aerodynamic modification of setback distance at half height of the tall building to minimize the wind effect

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.193-211
    • /
    • 2022
  • The present study focuses on aerodynamic parameters behaviors and control on the single and double side setback building models at the buildings mid-height. The study is conducted by computational fluid dynamics (CFD) simulation. This study estimates the face wise pressure coefficient on single side setback buildings with a setback range of 20%-50% and double side setback buildings with setbacks ranging from 10%-25%. The polynomial fitted graphs from CFD data predict the Cp on different setback model faces within permissible limit ±13% error. The efficient model obtained according to the minimum drag, lift, and moment consideration for along and across wind conditions. The study guides the building tributary area doesn't control the drag, lift, and moment on setback type buildings. The setback distance takes a crucial role in that. The 20% double side setback model is highly efficient to regulate the moment for both along and across wind conditions. It reduces 17.5% compared to the 20% single side setback and 14% moment compared to the 10% double side setback models. The double side setback building is more efficient to control 4.2% moment than the single side setback building

제공전투기의 초음속 순항 성능 향상을 위한 가변 앞전형상 에어포일의 개념설계 제안

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.647-652
    • /
    • 2016
  • To reduce drag force at supersonic speeds, sharp leading edge is hugely efficient. It is, however, incompatible with leading edge shape to have fine aerodynamic characteristics at subsonic and transonic speeds. It is critical to reduce drag force for enhanced cruise performance and higher efficiency. An air superiority fighter, however, required to have high maneuverability for survivability, and sharp leading edge is not proper. Consequently, variable leading edge is demanded to reduce drag force significantly at supersonic speeds for cruise performance. Leading edge altering system is constructed with rigid material to improve possibility of realization, and minimized movement of its components in altering for reduce effects on flight. It is compared with bi-convex airfoil and NACA 65-006 airfoil, which have comparable maximum thickness. At Mach number 1.7 and zero angle of attack, supersonic mode of designed airfoil indicates approximately 17% higher drag coefficient than the bi-convex airfoil indicates, it is, however, 23% lower than the NACA 65-006 indicates. Also, subsonic mode of the designed airfoil shows fine aerodynamic characteristics in comparison with NACA 65-006 airfoil in subsonic and transonic speed range. In this regard, design of the airfoil achieved the object of this study satisfactorily.

  • PDF

Analysis of the Aerodynamic Characteristics of 'Buhwal' Airplane (부활호의 공력 특성 해석)

  • Noh, Kuk-Hyeon;Cho, Hwan-Kee;Cheong, Seong-Gee;Cho, Tae-Hwan;Kim, Byung-Soo;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.882-887
    • /
    • 2012
  • This paper describes on the aerodynamic characteristics of the first domestically manufactured aircraft, Buhwalho, in Korea. The computational fluid dynamics(CFD) calculations and wind tunnel test were utilized to investigate the basic aerodynamic characteristics of aircraft with control surface deflections and attitude changes. Variations of lift, drag and pitching moment due to angles of attack and control surface deflections were analyzed and also flight stability due to side force, yawing and rolling moments caused by the change of sideslip angles, rudder and aileron deflections were discussed. Through this study, the meaningful aerodynamic data by CFD calculations and wind tunnel tests were obtained and the flight characteristics based on these data were confirmed accordingly by the flight tests.

Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations (Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석)

  • Kim, C.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

Influence of Rotating Wheel and Moving Ground Condition to Aerodynamic Performance of 3-Dimensional Automobile Configuration (돌아가는 바퀴 및 이동지면 조건이 3차원 자동차 형상의 공력성능에 미치는 영향에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Hoon-Il;Ku, Yo-Cheon;Kee, Jung-Do;Hong, Dong-Hee;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.100-107
    • /
    • 2010
  • This paper gives new conceptual descriptions of drag reduction mechanism owing to rotating wheel and moving ground condition when dealing with automotive aerodynamics. Using Computational Fluid Dynamics (CFD), flow simulation of three dimensional automobile configuration made by Vehicle Modeling Function (VMF) is performed and the influence of wheel arch, wheels, rotating wheel & moving ground condition to the automotive aerodynamic performance is analyzed. Finally, it is shown that rotating wheel & moving ground condition decreases automotive aerodynamic drag owing to the reduction of the induced drag led by the decrease of COANDA flow intensity of the rear trunk flow.

Low Speed Aerodynamic Characteristic of Modified Sonic Arc Airfoil (수정 Sonic Arc 익형의 저속 공력특성)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • The low speed aerodynamic characteristics of modified sonic arc airfoil which is developed to fit the transonic regime are investigated. This airfoil is designed by using the shape function of sonic arc proposed by Schwendenman, the data of NACA0012, and commercial program Maple. In order to investigate the low speed aerodynamic characteristic of sonic arc airfoil, the numerical analysis is conducted below Mach number 0.3 and the results are compared and analyzed with it of NACA0012 airfoil. At each Mach number, the drag of modified sonic arc airfoil is less 1.5% than NACA0012's drag and the lift of modified sonic arc airfoil is less 2% than NACA0012's lift. The moment coefficient of modified sonic arc airfoil is also less 1.4% than it of NACA0012 at each Mach number.