• 제목/요약/키워드: Aerodynamic control

Search Result 490, Processing Time 0.031 seconds

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.

Effect of trailing-edge modification over aerodynamic characteristics of NACA 0020 airfoil

  • Ethiraj, Livya;Pillai, Subramania Nadaraja
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2021
  • This study investigates the aerodynamic characteristics of NACA series airfoil by altering the trailing edge in the form of extended and serrated sections. This contemporary advent examined NACA 0020 airfoil experimentally at the angle of attack ranging from 0° to 45° and for the Reynolds number of 2.46 × 105. To figure out the flow behaviour, the standard average pressure distribution over the airfoil surface is estimated with 50 pressure taps. The time series surface pressure is recorded for 700 Hz of sampling frequency. The extended trailing edge of 0.1 c, 0.2 c and 0.3 c are attached to the base airfoil. Further, the triangular serration is introduced with the base length of 2 cm, 4 cm and 6 cm. Each base length with three different amplitudes of 0.1 c, 0.2 c and 0.3 c were designed and equipped with the baseline case at the trailing edge and tested. The aerodynamic force coefficient, as well as pressure coefficient are presented. The obtained data advises that modification in the trailing edge will reflect the aerodynamic characteristics and the flow behaviour over the section of a wing. Resultantly, the extended trailing edge as a thin elongated surface attached to a base airfoil without revising the main airfoil favors good lift increment. The serrated trailing edge acts as a flow control device by altering the flow pattern results to delay the stall phenomenon. Besides it, improves lift co-efficient with less amount of additional drag. This extended and serrated trailing edge approach can support for designing the future smart airfoil.

Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper deals with missile autopilot design for agile turn phase in air-to-air engagement scenarios. To attain a fast response, angle-of-attack (AOA) is adopted for an autopilot command structure. Since a high operational AOA is generally required during the agile turn phase, dealing with the aerodynamic uncertainties can be a challenge for autopilot design. As a remedy, a new controller design method based on robust nonlinear control methodology such as time delay control is proposed in this paper. Nonlinear observer is also proposed to estimate the AOA in the presence of the model uncertainties. The performance of the proposed controller with variation of the aerodynamic coefficients is investigated through numerical simulations.

Wind Tunnel Test of 2D Model for Plasma Flow Control using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 2차원 모델의 플라즈마 유동제어 풍동시험)

  • Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.527-528
    • /
    • 2012
  • DBD (Dielectric Barrier Discharge) plasma actuator was designed for aerodynamic drag reduction using plasma flow control, and the drag reduction was measured by wind-tunnel tests using 2D test model. At the zero wind velocity, the plasma flow control had no effect on the drag reduction because the flow separation and surface friction drag were not occurred. At the wind velocity of 2m/s, 9.7% of drag was reduced by the flow separation control. The drag reduction decreased as the wind velocity increased.

  • PDF

The Study of Aerodynamic Characteristics of Jet-Vane Affected by the Shroud (Shroud의 영향에 따른 제트 베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • Thrust vector control system is a control device which is mounted on the exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. Thermal and aerodynamic loads are acting on the surface of jet vane when it is exposed to the jet flow. Axial thrust loss and side thrust loss are affected by shock patterns and interactions between jet-vanes which varies with jet-vane geometry and turning angle. In this research, the performance estimation using the numerical simulation analysis of the nozzle is given and the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane is taken.

Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster

  • Kang, Kyoung Tai;Lee, Eunseok;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • A continuous type side jet controller which has four nozzles with thrust control devices was considered. It is deployed to a missile for high maneuverability and fast controllability in the terminal guidance phase. However, it causes more complex aerodynamic jet interactions between the side jet and the supersonic free stream than does the conventional impulse type side jet with a small single thruster. In this paper, a numerical investigation of the jet interference effects for the missile equipped with a continuous type side jet thruster is presented. A three-dimensional flow field was simulated by using a commercial unstructured-based CFD solver. The numerical simulation method was validated through comparison with wind tunnel test results for the single jet. The method of defining jet direction for this type of side jet control to minimize simulation cases was also introduced. Flow fields investigation and jet interaction effects for various flow conditions, jet pressure ratios and defined jet direction conditions were performed. From the numerical simulation for the continuous type side jet, extensive aerodynamic interference data were obtained to construct an aerodynamic coefficients database for precise missile control.

System Identification of Aerodynamic Coefficients of F-16XL (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.383-388
    • /
    • 2004
  • This paper presents the aerodynamic coefficient modeling with a new model structure explored by Least Squares using Modulating Function Technique (LS/MFT) for an F-16XL airplane using wind tunnel data supplied by NASA/LRC. A new model structure for aerodynamic coefficient was proposed, one that considered all possible combination terms of angle of attack ${\alpha}$(t) and ${\alpha}$(t) given number of harmonics K, and was compared with Pearson's model, which has the same number of parameters as the new model. Our new model harmonic results show better agreement with the physical data than Pearson's model. The number of harmonics in the model was extended to 6 and its parameters were estimated by LS/MFT. The model output of lift coefficient with K=6 correspond reasonably well with the physical data. In particular, the estimation performances of four aerodynamic coefficients were greatly improved at high frequency by considering all harmonics included in the input${\alpha}$(t), and by using the new model. In addition, the importance of each parameter in the model was analyzed by parameter reduction errors. Moreover, the estimation of three parameters, i.e., amplitude, phase and frequency, for a pure sinusoid and a finite sum of sinusoids- using LS/MFT is investigated.

  • PDF

Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis (유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구)

  • Ma, Sang-Bum;Kim, Kwang-Yong;Choi, Jaeho;Lee, Wonsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.