• Title/Summary/Keyword: Aerodynamic center

Search Result 217, Processing Time 0.024 seconds

Loads of NREL Phase VI Rotor at Hub in Yawed Conditions (요 상태에서 NREL Phase VI 로터의 허브 중심 하중 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.841-847
    • /
    • 2019
  • Time series data of 6-component loads were computed for a horizontal axis wind turbine rotor in yawed operating conditions with both rotating and non-rotating coordinate systems fixed at a center of a rotor hub. In this study, a well-known 20 kW class of the NREL Phase VI rotor was used for a model wind turbine, and this paper focuses on the yaw moments and over-turning moments for the operating wind speed range between 6 to 25 m/s. Unsteady blade element momentum theorem was adopted to get the aerodynamic loads acting on the wind turbine rotor. Computed 6-component loads using the developed UBEM code were compared with those using the NREL FAST program. From the computed results, both yaw and over-turning moments would be basic inputs to determine not only the specification of yawing mechanism but also the design condition of foundation.

복합재료 선미익 항공기 날개 하중해석

  • Han, Chang-Hwan;Kim, Eung-Tai;Ahn, Seok-Min;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2002
  • In this study, the load analysis of a composite canard aircraft is performed numerically. Excel visual basic program for PC is used to calculate aerodynamic coefficients, loads and moments etc.. The basic data required for the load analysis such as aircraft configuration and dimension, parts and its weight and coordinate etc. are obtained from Catia modeling, measurement or material density. Aircraft weight, center of gravity, inertia moment, structural design speeds, wing load distribution, forces and moments are evaluated by using these data. V-n diagram is also represented for selecting critical loads applied to the wing and fuselage. The V-n diagram is investigated to decide the flight envelope of canard aircraft for design speed VA, VC, VD and load factor +3.8G, -1.52G at maximum weight of 2,573 lbs and sea level. In the future, the results of the wing and fuselage load analysis is to represented by using selected critical loads.

  • PDF

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Wind tunnel investigation of correlation and coherence of wind loading on generic tall twin buildings in close proximity

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.443-456
    • /
    • 2014
  • A popular modern architectural form for tall buildings is two (or more) towers which are structurally linked through such features as a shared podium or sky-bridges. The fundamental features of the wind loading and the structural links of such buildings can be studied by measuring load components on the individual unlinked towers along with their correlations. This paper describes application of dual high frequency force balance (DHFFB) in a wind tunnel study of the base wind loading exerted on generic tall twin buildings in close proximity. Light models of two identical generic tall buildings of square plan were mounted on DHFFB and the base wind loading exerted on the buildings was simultaneously acquired. The effects of the relative positions of the buildings on the correlations and coherences involving loading components on each building and on the two buildings were investigated. For some relative positions, the effects of the building proximity on the wind loading were significant and the loading was markedly different from that exerted on single buildings. In addition, the correlations between the loadings on the two buildings were high. These effects have potential to significantly impact, for example, the modally-coupled resonant responses of the buildings to the aerodynamic excitations. The presented results were not meant to be recommended for direct application in wind resistant design of tall twin buildings. They were intended to show that wind loading on tall buildings in close proximity is significantly different from that on single buildings and that it can be conveniently mapped using DHFFB.

Efficacy of Calcium Hydroxyapatite in Vocal Fold Augmentation for Unilateral Vocal Fold Paralysis in Asian

  • Lee, Doh Young;Chung, Eun-Jae;Kwon, Seong-Keun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.29 no.2
    • /
    • pp.83-86
    • /
    • 2018
  • Background and Objectives : This study aimed to evaluate efficacy and complication of injection laryngoplasty using calcium hydroxyapatite (CaHA) for unilateral vocal fold paralysis in Asian. Materials and Methods : A prospective study was conducted on the adult patients with unilateral vocal fold paralysis from May 2015 through January 2016. Injection laryngoplasty was performed by one laryngologist. All patients underwent prospective voice evaluation using the subjective and objective comprehensive battery of assessments, before the procedure and after the procedure at 3 months, and 6 months. Results : A total of 7 patients (5 males and 2 females) were included in this study. VHI-10 was significantly decreased after injection laryngoplasty, at postoperative 6 months (p=0.031), while VAS score and MDADI showed no difference. GRBAS scale gradually decreased in 3 months and 6 months follow-up without statistical significance. Acoustic analysis revealed that jitter, shimmer, and noise-to-harmonic ratio continuously decreased from the baseline at 3 months and 6 months, although statistical significance was not attained. In the aerodynamic analysis, maximal phonation time was gradually increased at 3months and 6 months with significant difference (p=0.016, 0.031, respectively). There was no side effect associated with the procedure. Conclusion : CaHA can be safely used in Asian patients and the onset of maximal efficacy seems to be slow than other studies with Caucasian patients.

Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition (트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.309-314
    • /
    • 2018
  • The wind load and structural characteristics of a twin building are more complex than those of conventional high-rise buildings. The pressure load due to wind on a twin building was therefore measured via wind tunnel experiments to analyze such characteristics. The wind pressure pattern was then deduced from measured data using proper orthogonal decomposition. Channeling and vortex shedding were observed in the first and second modes, respectively. The along-wind loads on the two buildings featured a positive correlation and the cross-wind loads featured no correlation. Such a correlation affected the wind-induced displacement. The structural member connecting the two buildings had an insignificant effect on the positive correlation, but it notably reduced the wind-induced displacement with a negative correlation.

Stability Characteristics of Supercritical High-Pressure Turbines Depending on the Designs of Tilting Pad Journal Bearings

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, for a high-pressure turbine (HPT) of 800 MW class supercritical thermal-power plant, considering aerodynamic cross-coupling, we performed a rotordynamic logarithmic decrement (LogDec) stability analysis with various tilting pad journal bearing (TPJB) designs, which several steam turbine OEMs (original equipment manufacturers) currently apply in their supercritical and ultra-supercritical HPTs. We considered the following TPJB designs: 6-Pad load on pad (LOP)/load between pad (LBP), 5-Pad LOP/LBP, Hybrid 3-Pad LOP (lower 3-Pad tilting and upper 1-Pad fixed), and 5-Pad LBPs with the design variables of offset and preload. We used the API Level-I method for a LogDec stability analysis. Following results are summarized only in a standpoint of LogDec stability. The Hybrid 3-Pad LOP TPJBs most excellently outperform all the other TPJBs over nearly a full range of cross-coupled stiffness. In a high range of cross-coupled stiffness, both the 6-Pad LOP and 5-Pad LOP TPJBs may be recommended as a practical conservative bearing design approach for enhancing a rotordynamic stability of the HPT. As expected, in a high range of cross-coupled stiffness, the 6-Pad LBP TPJBs exhibit a better performance than the 5-Pad LBP TPJBs. However, contrary to one's expectation, notably, the 5-Pad LOP TPJBs exhibit a slightly better performance than the 6-Pad LOP TPJBs. Furthermore, we do not recommend any TPJB design efforts of either increasing a pad offset from 0.5 or a pad preload from 0 for the HPT in a standpoint of stability.

Particulate Matter 10 from Asian Dust Storms Induces the Expression of Reactive Oxygen Species, NF-κ, TGF-β and Fibronectin in WI-26 VA4 Epithelial Cells (황사의 PM10이 WI-26 VA4 Cells에서 Reactive Oxygen Species, NFκB, TGF-β, Fibronectin의 발현에 미치는 영향)

  • Park, Kyeong Seon;Kim, Yu Jin;Yoon, Jin Young;Kyung, Sun Young;An, Chang Hyeok;Lee, Sang Pyo;Park, Jeong Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • Background: Particulate matter may be toxic to human tissue. Ambient air particulate matter ${\leq}10{\mu}m$ in aerodynamic size ($PM_{10}$), which changes under different environmental conditions, is a complex mixture of organic and inorganic compounds. The Asian dust event caused by meteorological phenomena can also spread unique particulate matter in affected areas. We evaluated production of ROS, $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$ by exposing normal epithelial cells to Asian dust particulate matter. Methods: Bronchial epithelial cells were exposed to 0, 50, ${\leq}100{\mu}g/ml$ of a suspension of $PM_{10}$ for 24 h. ROS were detected by measurement of DCF release from DCF-DA by FACScan. $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$ were detected by western blotting. Results: $PM_{10}$ exposure increased the expression of $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$. ROS production and $TGF-{\beta}$ levels were significantly higher with 50 or ${\leq}100{\mu}g/ml$ $PM_{10}$. Fibronectin and $NF{\kappa}B$ production were significantly higher after ${\leq}100{\mu}g/ml$ of $PM_{10}$. Conclusion: $PM_{10}$ from Asian dust particles might have fibrotic potential in bronchial epithelial cells via ROS induction after $PM_{10}$ exposure.

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.