• Title/Summary/Keyword: Aerodynamic Shape Design

검색결과 232건 처리시간 0.025초

유전 알고리즘을 이용한 공력 형상 최적화 연구 (Study of Aerodynamic Design Optimization Using Genetic Algorithm)

  • 김수환;권장혁
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.10-18
    • /
    • 2001
  • Genetic Algorithm(GA) is applied to aerodynamic shape optimization and demonstrated its merits in global searching ability and the independency of differentiability. However, applications of GA are limited due to slow convergence rate, premature termination, and high computing costs. The present aerodynamic designs such as wing shape optimizations using GA have seldom been applied because of high computing costs. This paper has two objects; improvement of the efficiency of GA and application of GA into aerodynamic shape optimization for 2D and 3D wings. The study indicates that GA can be applied to aerodynamic design and its performance is comparable to traditional design methods.

  • PDF

Aerodynamic Design of the KARI Mid-sized Aerostat

  • Huh, Lynn;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.43-53
    • /
    • 2006
  • Aerodynamic shape design of the Mid-sized Aerostat was performed with computational fluid dynamics. Design procedure included determination of hull volume and length, hull shape, tailfin configuration with anhedral and location, tailfin section. For aerodynamic analysis, three dimensional Navier-Stokes equations were applied with Spalart-Allmaras turbulence model. During design procedure, static moment derivatives were mainly considered for the stability of aerostat and structural limitations were also considered for practical application of the designed shape. Aerodynamic analysis of the designed aerostat was carried out and aerodynamic characteristics were compared with those of the TCOM 71m aerostat, one of the most successful commercial aerostats. It was found that the designed KARI Mid-sized Aerostat had better stability characteristics compared to the TCOM 71m aerostat.

Machine learning-enabled parameterization scheme for aerodynamic shape optimization of wind-sensitive structures: A-proof-of-concept study

  • Shaopeng Li;Brian M. Phillips;Zhaoshuo Jiang
    • Wind and Structures
    • /
    • 제39권3호
    • /
    • pp.175-190
    • /
    • 2024
  • Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However, shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.

고속전철의 형상에 따른 공력특성 연구 (A Study about aerodynamic characteristics of High speed train by fore-body shape design)

  • 진원재;이봉래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.735-738
    • /
    • 1997
  • The aerodynamic charateristics of high speed train can be improved by fore-body design. In this paper, the design a fore-body shape which has optimal aerodynamic charateristics, 6 models of fore-body shape are proposed and the change of aerodynamic characteristics is studied through calculations of flow field around high speed train fro each fore-body shape. The flow field around high speed trains are calculated using Navier-Stokes equation. The variational trends of aerodynamic characteristics are studied from the result of flow calculation around high speed trains for 6 fore-body shapes.

  • PDF

형상함수를 이용한 열차 전두부 설계기법 연구 (Study on the Design Method for the Train Nose Shape Using the Configuration Function)

  • 구요천;노주현;윤수환;곽민호;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF

Multi-Point Aerodynamic Shape Optimization of Rotor Blades Using Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.66-78
    • /
    • 2007
  • A multi-point aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference. The 'objective function and the sensitivity were obtained as a weighted sum of the values at each design point. The blade section contour was modified by using the Hicks-Henne shape functions. The mesh movement due to the blade geometry change was achieved by using a spring analogy. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized based on a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the wake. Applications were made to the aerodynamic shape optimization of the Caradonna-Tung rotor blades and the UH-60 rotor blades in hover.

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.

최소항력을 갖는 비행선의 구조 및 공력 설계 (Aerodynamic and Structural design of Low drag Airship)

  • 윤성찬;이재홍;허현우;유새롬;김두만
    • 항공우주시스템공학회지
    • /
    • 제3권3호
    • /
    • pp.24-31
    • /
    • 2009
  • The Airship which uses light gases(Helium) can afford to be managed safely, and economically. In this paper, it executed Airship aerodynamic design using Theory of the Airship shape. With the change of main design factor, aerodynamic coefficients were investigated by FLUENT and the shape of the Airship which has low drag was chosen. For low drag coefficient of the Airship, the theory of traditional Airship shape was used. The structural analysis of the Airship is executed by ANSYS.

  • PDF

공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계 (Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave)

  • 권혁빈;김유신;이동호;김문상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF

수직축 풍력터빈 블레이드의 공기역학적 특성 (Aerodynamic characteristics of a vertical axis wind turbine blade)

  • 신지영;손영석;차득근;이철균;황이철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.