• 제목/요약/키워드: Aerodynamic Roughness Length

검색결과 13건 처리시간 0.018초

사장교의 버페팅 응답 변수 연구 (Parametric Study on the Buffeting Response for a Cable-Stayed Bridge)

  • 김호경;최성원;김영호
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.371-382
    • /
    • 2006
  • 사장교는 난류에 의해 불규칙한 진동을 일으키며 이 현상을 규명하기 위하여 버페팅해석을 수행한다. 버페팅해석을 위해서 는 구조적 변수, 공기역학적 변수, 그리고 구조물-바람 상호작용 효과를 고려하기 위한 공탄성 변수의 입력값을 적절히 선정해야 한다. 본 연구에서는 버페팅해석을 수행하기 위한 입력 변수 중 대표적 변수들에 대하여 변수연구를 수행함으로써 각 변수들이 해석 결과에 미칠 수 있는 민감도를 분석해 보고자 하였다. 풍동실험 자료가 가장 잘 구축되어 있는 서해대교를 대상교량으로 선정하였다. 검토 변수로서는 정적 삼분력계수의 기울기, 난류의 공간분포 상관관계감소계수, 조도길이, 변동풍속 스펙트럼, 구조감쇠율을 선정하였다. 검토결과 각 입력변수는 버페팅 응답에 미치는 영향이 큰 것으로 확인되었기 때문에 적정한 입력변수 선정의 중요성을 강조함과 동시에 일반적 결론 도출을 위하여 추후 연구가 필요함을 제시하였다.

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

광릉수목원 혼합림에서 복사 에너지의 계절 변화 특성 (Characteristics of the Seasonal Variation of the Radiation in a Mixed Forest at Kwangneung Arboretum)

  • 김연희;조경숙;김현탁;엄향희;최병철
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.285-296
    • /
    • 2003
  • The measurement of the radiation energy, trunk temperature, leaf area index (LAI), air temperature, vapor pres-sure, and precipitation has been conducted under a mixed forest at Kwangneung Arboretum during the period of 2001. Characteristics of the diurnal and seasonal variation of the radiative energy were investigated. The aerodynamic roughness length was determined as about 1.6 m and the mean albedo was about 0.1 The downward short-wave radiation was linearly correlated with the net radiation and its correlation coefficient was about 0.96. From this linear relation, the heating coefficient was calculated and its annual mean value was about 0.21 The albedo and heating coefficient was varied with season, surface characteristics, and meteorological conditions. The diurnal and seasonal variations of radiation energy were discussed in terms of the surface characteristics and meteorological conditions. In the daytime, during clear skies, net radiation was dominated by the shortwave radiation. In presence of clouds and fog, the radiation energy was diminished. At night, the net radiation was entirely dominated due to the net longwave radiation. There was no distinct diurnal variation in net radiation flux during the overcast or rainy days. The net radiation was strongest in spring and weakest in winter. The seasonal development in leaf area was also reflected in a strong seasonal pattern of the radiation energy balance. The timing, duration, and maximum leaf area and trunk temperature were found to be an important control on radiation energy budget. The trunk temperature was either equal or warmer than air temperature during most of the growing season because the canopy could absorb a substantial amount of sunlight. After autumn (after the middle of October), the trunk temperature was consistently cooler than air temperature.