• Title/Summary/Keyword: Aerodynamic Power

Search Result 390, Processing Time 0.021 seconds

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

Design of a Turbine System for Liquid Rocket Engines (액체로켓용 터빈시스템 설계)

  • Lee, Dae-Sung;Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.11-18
    • /
    • 2002
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle and potential energy is converted to kinetic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power, etc.) following Liquid Rocket Engine (L.R.E.) system specifications. For simplicity of turbine system, impulse-type rotor blades for open-type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow-rate compared to close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system was introduced. Especially, partial admission nozzle was designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design is presented for a 10 ton thrust level of L.R.E.

Efficiency Estimation on Propulsion System of an Electric Powered UAV (전기동력 무인항공기의 추진시스템 효율 추정에 관한 연구)

  • Ahn, Il-Young;Yang, Yong-Man;Ju, Young-Chul;Park, SangHyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In the present study, we conducted the research on the high efficiency propulsion system for the development of long-endurance UAV with an electric propulsion system. For the long endurance UAV, fair aerodynamic characteristics with the high efficiency of the propulsion system is required because the flight power and the duration time of the long-endurance UAV vary greatly depending on the efficiency of the propulsion system. Therefore, in this study, the tracking program which records the performance of motor, propeller was developed because of their wide variation in the efficiency depending on the using condition, and records from the existing flight test program were utilized to check the accuracy of the program we had developed. For the development of future long-endurance solar UAV, we confirmed the applied voltage of motor, the optimal rotation of propeller and the gear ratio of reduction gear in order to get the highest efficiency on the propulsion system at the optimal flying condition.

Computational evaluation of wind loads on a standard tall building using LES

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.567-598
    • /
    • 2014
  • In this paper, wind induced aerodynamic loads on a standard tall building have been evaluated through large-eddy simulation (LES) technique. The flow parameters of an open terrain were recorded from the downstream of an empty boundary layer wind tunnel (BLWT) and used to prescribe the transient inlet boundary of the LES simulations. Three different numerically generated inflow boundary conditions have been investigated to assess their suitability for LES. A high frequency pressure integration (HFPI) approach has been employed to obtain the wind load. A total of 280 pressure monitoring points have been systematically distributed on the surfaces of the LES model building. Similar BLWT experiments were also done to validate the numerical results. In addition, the effects of adjacent buildings were studied. Among the three wind field generation methods (synthetic, Simirnov's, and Lund's recycling method), LES with perturbation from the synthetic random flow approach showed better agreement with the BLWT data. In general, LES predicted peak wind loads comparable with the BLWT data, with a maximum difference of 15% and an average difference of 5%, for an isolated building case and however higher estimation errors were observed for cases where adjacent buildings were placed in the vicinity of the study building.

Flutter performance of central-slotted plate at large angles of attack

  • Tang, Haojun;Li, Yongle;Chen, Xinzhong;Shum, K.M.;Liao, Haili
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.447-464
    • /
    • 2017
  • The flutter instability is one of the most important themes need to be carefully investigated in the design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where the plate becomes a bluff body, the existence of central slot further reduces the flutter performance.

Design of a Turbine System for Liquid Rocket Engine (액체로켓용 터빈시스템 설계)

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Woo, Yoo-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.145-152
    • /
    • 2000
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power etc.) obtained from liquid rocket engine (L.R.E.) system design. For simplicity of turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to close-type system. In this study, a partial admission nozzle Is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system has been introduced. Especially, partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes (비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석)

  • Lee, Eun-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

High-efficiency propeller development for Multicopter type UAV (멀티콥터형 무인기용 고효율 프로펠러 개발)

  • Wie, Seong-Yong;Kang, Hee Jung;Kim, Taejoo;Kee, Young-Jung;Song, Jaerim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.581-593
    • /
    • 2017
  • In order to develop high efficiency propeller for multicopter type UAV, we designed, analyzed and tested aerodynamic and structural dynamics. For the design of the high efficiency propeller, the optimum design method was applied for the determination of the airfoil and the three-dimensional planform is designed to reduce induced power of the propeller. The flight suitability of the derived shape was determined through structural design and analysis. The rotation test was performed to confirm the performance of the analytically designed shape. In this paper, we propose a procedural propeller design methodology using these design analysis test methods.

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.