• 제목/요약/키워드: Aerodynamic Optimization

검색결과 226건 처리시간 0.023초

항공기 날개의 공력하중 측정 기법 연구 (A Study on the Measurement of Aerodynamic Load of Aircraft Wing)

  • 강승희;이종건;이승수;안승기
    • 한국항공우주학회지
    • /
    • 제30권4호
    • /
    • pp.38-43
    • /
    • 2002
  • 본 연구에서는 항공기 날개 표면에서의 공력 하중 분포를 측정하는 풍동 시험 및 모형 설계와 제작에 대한 연구를 수행하였다. 모형 날개에는 총 447개의 압력공을 표면에 수직하게 제작하였으며, 날개 내부에 설치한 압력 tube를 통해 모형 내부에 설치된 총 8개의 EPS modules에 연결하여 PSI-8400 system을 사용 압력 분포를 측정하였다. 풍동 시험은 국방과학연구소 아음속풍동을 사용 50m/sec에서 정속모드로 수행하였다. 시험은 하중분포 예측을 위해 받음각과 옆미끄럼각 변위, 플랩 및 외부장착물 설치에 따른 날개에서의 하중분포 측정을 위해 수행하였다. 본 시험 결과로 항공기 날개 구조 최적 설계 자료로의 활용 및 전산유체역학의 결과 검증에 활용 할 수 있을것으로 판단된다.

최적화 기법을 이용한 일반적인 날개 형상에서의 유동특성 향상 (Developing the flow quality in an wing-body junction flow by the optimizing method)

  • 조종재;김귀순
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.303-307
    • /
    • 2009
  • 터빈 익렬 내의 2차유동손실은 터빈 익렬에서 발생하는 전체 공기역학적 손실의 $30{\sim}50%$ 차지한다. 따라서 터빈 효율 향상에 있어 개선해야 될 중요한 부분으로 인식되고 있다. 또한, 과거부터 2차유동에 의한 손실을 줄이기 위한 많은 연구들이 수행되어졌다. 본 논문에서는 2차유동손실을 일으키는 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 설치한 판에 대해, 판의 설치 높이, 길이, 폭 및 두께 등의 형상변수를 설계변수로 정하여 이를 최적화 하였다. 연구를 위해 $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 그리고 기준 모델의 경우보다 전압력 손실 계수가 약 7.5% 향상 되었다.

  • PDF

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석 (Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship)

  • 모장오;김유택;김만응;오철;김정환;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.175-181
    • /
    • 2011
  • 본 연구에서는 선박용 폐열회수 발전시스템에 적용 가능한 100kW급 구심터빈의 설계 및 CFD 해석기법을 이용하여 열사이클 시스템 및 구심터빈 최적화를 위한 설계자료를 확보하는 것이다. 구심터빈은 스크롤 케이싱, 18개의 베인노즐, 13개의 로터 블레이드로 구성되며, 해석격자는 격자테스트를 통해 약 230만개 정도의 최적격자를 구성하였다. 질량유량 0.5kg/s, 회전속도는 75,000rpm, 입구압력은 195~620kPa 범위 내에서 8가지 조건으로 설정하였다. 베인노즐 내부로 증기가 유입된 후 출구로 갈수록 노즐의 압력면과 흡입면의 압력이 비슷해지면서 마하수가 거의 같은 값을 보였다. 입구온도와 압력이 $250^{\circ}C$, 352kPa 일 때 등엔트로피 효율은 74%, 기계동력은 108kW의 해석결과를 보이고 있다.

공력해석과 RCS해석 통합 500 lbs급 공대지 미사일 최적설계 (500 lbs-class Air-to-Surface Missile Design by Integration of Aerodynamics and RCS)

  • 배효길;이광기;정준오;상대규;권장혁
    • 한국항공우주학회지
    • /
    • 제40권2호
    • /
    • pp.184-191
    • /
    • 2012
  • 최적설계 프레임워크를 구성하여 미사일 개념설계 단계에 필요한 공력해석(DATCOM)과 RCS 해석(POFACETS) 프로세스를 통합하였다. 미사일 형상정의는 제작과 설계의 동시성과 형상정보 산출 등을 목적으로 CAD(CATIA)를 기반으로 하였다. 정의된 형상정보가 자동적으로 해석 프로세스에 입력되도록 ModelCenter를 이용하여 프로세스들을 연결 하였다. 군요구도 정립부터 요구도 평가를 거쳐 미사일 설계 기준형상을 선정하였고, 양항비를 망대 구속조건으로 하여 RCS 최소화 최적설계를 실시하였다. 본 논문에서 구성한 최적설계 프레임워크를 이용하여 미사일 개념설계 단계에서 여러 미사일 형상들에 대한 효율적인 분석과 다양한 설계 전략을 구현할 수 있음을 확인하였다.

Prediction of skewness and kurtosis of pressure coefficients on a low-rise building by deep learning

  • Youqin Huang;Guanheng Ou;Jiyang Fu;Huifan Wu
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.393-404
    • /
    • 2023
  • Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.