• Title/Summary/Keyword: Aerodynamic Modification

Search Result 61, Processing Time 0.025 seconds

The Study on Structural Strength Test Technique for Cylindrical Supersonic Vehicle Subjected to Severe Heating Environment (원통형 초음속 비행체 내열구조시험 기법 연구)

  • Lee, Kyung-Yong;Kim, Jong-Hwan;Lee, Kee-Bhum;Jung, Jae-Kwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.83-91
    • /
    • 2005
  • This paper describes the structural strength test technique and the results for cylindrical supersonic vehicle subjected to both aerodynamic load and thermal load. The special positioning system using spring links was designed to float, support and restrain the test airframe during the test and the down-time. The hydraulic system and the electric heating system were utilized to apply the aerodynamic load and the thermal load to the test airframe together. Particularly, several hundreds of infrared quartz lamps were used for the heating system, and the thermal test conditions were successfully simulated. The test results showed that this kind of high temperature test is adequate to verify the structure integrity and produce useful engineering data which is necessary for the possible structural modification under thermal environments.

Modificaion and Performance Test for improving ability of Supersonic/Hypersonic Wind Tunnel(MAF) (초음속/극초음속 풍동(MAF)의 성능 향상을 위한 개조 및 검증)

  • Choi, Won-Hyeok;Seo, Dong-Su;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.717-722
    • /
    • 2010
  • Supersonic/Hypersonic wind tunnel is a facility which is intended to test and to observe the physical phenomena around a model by creating supersonic flow in the test section. In designing an airplane, the wind tunnel test is demanded to analyzing aerodynamic characteristics of the model without making a prototype. In this research, the model aerodynamic facility(MAF) is modified for the purpose of increasing running time and its functionality. New pneumatic valves for remote control was installed for safety requirement, and new air tanks was installed on MAF as well. A pipe system is also modified to use those new valves and tanks, and the ceiling and side glasses of the test section are switched to ones with the larger surface area. After the MAF modification, a test is performed at Mach 2, 3 and 4. In this test, shadow graph technique, one of the flow visualization methods, is used to visualize supersonic flow field. The pressure in the settling chamber and working section at Mach 2, 3 and 4 was measured in each case. As a result, the possible model size and running time are obtained.

  • PDF

Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System (자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events (영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성)

  • Kim, Ji-Eon;Kwon, Tae-Yong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.

Design and Performance Evaluation of Superstructure Modification for Air Drag Reduction of a Container Ship (공기저항 저감을 위한 컨테이너선 상부구조물 형상설계 및 성능평가)

  • Kim, Yoonsik;Kim, Kwang-Soo;Jeong, Seong-Wook;Jeong, Seung-Gyu;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.8-18
    • /
    • 2015
  • Reduction of the fuel oil consumption and corresponding greenhouse gas exhausted from ships is an important issue for today's ship design and shipping. Several concepts and devices on the superstructure of a container ship were suggested and tested in the wind tunnel to estimate the air drag reduction. As a preliminary performance evaluation, air drag contributions of each part of the superstructure and containers were estimated based on RANS simulation respectively. Air drag reduction efficiency of shape modification and add-on devices on the superstructure and containers was also estimated. Gap-protectors between containers and a visor in front of upper deck were found to be most effective for drag reduction. Wind tunnel tests had been carried out to confirm the drag reduction performance between the baseline(without any modification) configuration and two modified superstructure configurations which were designed and chosen based on the computation results. The test results with the modified configurations show considerable aerodynamic drag reduction, especially the gap-protectors between containers show the largest reduction for the wide range of heading angles. RANS computations for three configurations were performed and compared with the wind tunnel tests. Computation result shows the similar drag reduction trend with experiment for small heading angles. However, the computation result becomes less accurate as heading angle is increasing where the massively separated flow is spread over the leeward side.

The Study of Turbulence Model of Low-Reynolds Number Flow (저 레이놀즈수 유동장에서의 난류모델에 관한 연구)

  • Yoo C.;Lee J. S.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

  • Lopes, M.F.P.;Paixao Conde, J.M.;Gomes, M. Gloria;Ferreira, J.G.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.487-498
    • /
    • 2010
  • When designing structures to the wind action, the variation of the mean wind velocity and turbulence parameters with the height above the ground must be taken into account. This paper presents the numerical simulation results of atmospheric boundary layer (ABL) airflows, in a numerical domain with no obstacles and with a cubic building. The results of the flow characterization, obtained with the FLUENT CFD code were performed using the ${\kappa}-{\varepsilon}$ turbulence model with the MMK modification. The mean velocity and turbulence intensity profiles in the inflow boundary were defined in accordance with the Eurocode 1.4, for different conditions of aerodynamic roughness. The maintenance of the velocity and turbulence characteristics along the domain were evaluated in an empty domain for uniform incident flow and the ABL Eurocode velocity profiles. The pressure coefficients on a cubic building were calculated using these inflow conditions.

FUZZY CONTROL LAW OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

  • Sul Cho;Park, Rai-Woong;Nam, Sae-Kyu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.205-209
    • /
    • 1998
  • A synthesis of fuzzy variable structure control is proposed to design a high-angle-of-attack flight system for a modification version of the F-18 aircraft. The knowledge of the proportional, integral, and derivative control is combined into the fuzzy control that addresses both the highly nonlinear aerodynamic characteristics of elevators and the control limit of thrust vectoring nozzles. A simple gain scheduling method with multi-layered fuzzy rules is adopted to obtain an appropriate blend of elevator and thrust vectoring commands in the wide operating range. Improving the computational efficiency, an accelerated kernel for on-line fuzzy reasoning is also proposed. The resulting control system achieves the good flying quantities during a high-angle-of- attack excursion. Thus the fuzzy logic can afford the control engineer a flexible means of deriving effective control laws in the nonlinear flight regime.

  • PDF

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.