• 제목/요약/키워드: Aerodynamic Databases

검색결과 4건 처리시간 0.021초

날개 전개가 가능한 무장의 분리 특성해석 (Separation Analysis of a Store with Deployable Wings)

  • 김병규;김상진;강인모;김명성;이승수
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.381-389
    • /
    • 2007
  • 외부장착물의 효율적인 분리해석을 위해 6-DOF 시뮬레이션 프로그램을 개발하였다. 이 S/W는 장착물에 작용하는 공기력을 미리 작성된 공력 데이터베이스를 이용하여 간단한 보간으로 얻기에 전산유체역학에 기초한 방법에 비해 매우 빠른 계산시간을 가지며, 고정된 형상의 무장 뿐 아니라 분리 중 날개를 전개하는 무장에 대해서도 해석이 가능하다. 본 논문에서는 날개전개 무장의 공력 데이터베이스를 MSAP(Multi-body Separation Analysis Program)을 이용하여 작성하고, 비정상 감쇠계수를 Missile Datcom을 이용하여 예측하였다. 이 데이터베이스와 6-DOF 시뮬레이션 프로그램으로 무장의 고정된 날개 뿐 아니라, 날개전개에 따른 무장의 분리 안전성을 판단하였다

유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계 (AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS)

  • 이학민;유재관;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구 (Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty)

  • 성재민;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • 제4권2호
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.