• Title/Summary/Keyword: Aerodynamic Data

Search Result 604, Processing Time 0.021 seconds

Speech Evaluation Tasks Related to Subthalamic Nucleus Deep Brain Stimulation in Idiopathic Parkinson's Disease: A Review (특발성 파킨슨병의 시상밑부핵 심부뇌자극술 관련 말 평가 과제에 대한 문헌연구)

  • Kim, Sun Woo;Kim, Hyang Hee
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.237-255
    • /
    • 2014
  • Idiopathic Parkinson disease(IPD) is an neurodegenerative disease caused by the loss of dopamine cells in the substantia nigra, a region of midbrain. Its major symptoms are muscular rigidity, bradykinesia, resting tremor, and postural instability. An estimated 70~90% of patients with IPD also have hypokinetic dysarthria. Subthalamic nucleus deep brain stimulation (STN-DBS) has been reported to be successful in relieving the core motor symptoms of IPD in the advanced stages of the disease. However, data on the effects of STN-DBS on speech performance are inconsistent. A medline literature search was done to retrieve articles published from 1987 to 2012. The results were narrowed down to focus on speech performance under STN-DBS based perceptual, acoustic, and/or aerodynamic analyses. Among the 32 publications which dealt with speech performance after STN-DBS indicated improvement(42%), deterioration(29%), mixed results(26%), or no change(3%). The most favorite method was found to be based upon acoustic analysis by using a vowel prolongation and Unified Parkinson's Disease Rating Scale(UPDRS). For the purpose of verifying the effect of the STN-DBS, speech evaluation should be undertaken on all speech components such as articulation, resonance, phonation, respiration, and prosody by using a contextual speech task.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Impact of face masks on spectral and cepstral measures of speech: A case study of two Korean voice actors (한국어 스펙트럼과 캡스트럼 측정시 안면마스크의 영향: 남녀 성우 2인 사례 연구)

  • Wonyoung Yang;Miji Kwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.422-435
    • /
    • 2024
  • This study intended to verify the effects of face masks on the Korean language in terms of acoustic, aerodynamic, and formant parameters. We chose all types of face masks available in Korea based on filter performance and folding type. Two professional voice actors (a male and a female) with more than 20 years of experience who are native Koreans and speak standard Korean participated in this study as speakers of voice data. Face masks attenuated the high-frequency range, resulting in decreased Vowel Space Area (VSA) and Vowel Articulation Index (VAI)scores and an increased Low-to-High spectral ratio (L/H ratio) in all voice samples. This can result in lower speech intelligibility. However, the degree of increment and decrement was based on the voice characteristics. For female speakers, the Speech Level (SL) and Cepstral Peak Prominence (CPP) increased with increasing face mask thickness. In this study, the presence or filter performance of a face mask was found to affect speech acoustic parameters according to the speech characteristics. Face masks provoked vocal effort when the vocal intensity was not sufficiently strong, or the environment had less reverberance. Further research needs to be conducted on the vocal efforts induced by face masks to overcome acoustic modifications when wearing masks.

Characterization of Particulates Containing Naturally Occurring Radioactive Materials in Phosphate Processing Facility (인광석 취급 산업체에서 발생하는 천연방사성물질 함유 입자의 특성 평가)

  • Lim, HaYan;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Phosphate rock, phosphogypsum, and products in phosphate processing facility contain naturally occurring radioactive materials (NORM). Therefore, they may give rise to enhanced radiation dose to workers due to inhalation of airborne particulates. Internal dose due to particle inhalation varies depending on particle properties. The objective of the present study was to characterize particle properties at the largest phosphate processing facility in Korea. A cascade impactor was employed to sample airborne particulates at various processing areas in the plant. The collected samples were used for characterization of particle size distribution, particle concentration in the air, and shape analysis. Aerodynamic diameters of airborne particulates ranged 0.03-100 ${\mu}m$ with the highest concentration at the particle size range of 4.7-5.8 ${\mu}m$ (geometric mean = 5.22 ${\mu}m$) or 5.8-9.0 ${\mu}m$ (geometric mean = 7.22 ${\mu}m$). Particle concentrations in the air varied widely by sampling area up to more than two orders of magnitude. The large variation resulted from the variability of mechanical operations and building ventilations. The airborne particulates appeared as spheroids or rough spherical fragments across all sampling areas and sampled size intervals. Average mass densities of phosphate rocks, phosphogypsums, and fertilizers were 3.1-3.4, 2.1-2.6, and 1.7 $gcm^{-3}$, respectively. Radioactivity concentration of uranium series in phosphate rocks varied with country of origin, ranging 94-866 $Bqkg^{-1}$. Among the uranium series, uranium was mostly concentrated on products, including phosphoric acid or fertilizers whereas radium was concentrated on byproducts or phosphogypsum. No significant radioactivity of $^{226}Ra$ and $^{228}Ra$ were found in fertilizer. However, $^{40}K$ concentration in fertilizer was up to 5,000 Bq $g^{-1}$. The database established in this study can be used for the accurate risk assessment of workers due to inhalation of airborne particles containing NORM. In addition, the findings can be used as a basic data for development of safety standard and guide and for practical radiation safety management at the facility.