• Title/Summary/Keyword: Aerodynamic Analysis

Search Result 1,343, Processing Time 0.023 seconds

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

Analyses for Re-entry Event and Survival characteristics according to Characters of Re-entering Space Objects (지구 재진입체의 특성에 따른 재진입사례 및 생존특성 분석)

  • Jeong, Soon-Woo;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.80-89
    • /
    • 2013
  • The amount of object which reenter the Earth's atmosphere has been increasing after the Sputnik I launch in October 1957. Most of reentry objects were incinerated by aerodynamic heating so they hardly survive. But they may incur casualties and widespread property damages if they survive and fall to surface. The amount of reentry objects, such as Satellite, Rocket Booster, Pressure Tank, ISS shows continued growth as byproduct of space activities. Most of the re-entry objects are incinerated at between altitude of 50km~80km and 10%~40% of the objects are surviving and falling to the ground. Therefore, this paper try to piece together the reentry event and analysis the survival characteristics of re-entry object.

Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification (인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계)

  • Park, Jinhwan;Tyan, Maxim;Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.649-656
    • /
    • 2013
  • High-lift devices have a major influence on takeoff, landing and stall performance of an aircraft. Therefore, a slotted flap design optimization process is proposed in this paper to obtain the most effective flap configuration from supported 2D flap configuration. Flap deflection, Gap and Overlap are considered as main contributors to flap lift increment. ANSYS Fluent 13.0.0$^{(R)}$ is used as aerodynamic analysis software that provides accurate solution at given flight conditions. Optimum configuration is obtained by Sequential Quadratic Programing (SQP) algorithm. Performance of the aircraft with optimized flap is estimated using Aircraft Design Synthesis Program (ADSP), the in-house performance analysis code. Obtained parameters such as takeoff, landing distance and stall speed met KAS-VLA airworthiness requirements.

Source Characteristics of Particulate Trace Metals in Daegu Area (대구지역 부유분진 중 미량금속성분의 발생원 특성연구)

  • 최성우;송형도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.469-476
    • /
    • 2000
  • This study was performed to understand the behavior and source characteristics of particulate trace metals in Daegu area. To do this, total of 84 samples had been collected from January to December 1999. TSP (total suspended particulate matter) and PM-10(particulate matter with aerodynamic diameters less 10${\mu}{\textrm}{m}$) were collected by filters on portable air sampler, and in TSP and PM-10 were analyzed by ICP(Inductively Coupled Plasma Spectrometer) after preliminary treatment. The results were follow as: first, annul means of TSP and PM-10 concentration were 123 and 69$\mu\textrm{g}$/㎤ respectively. The concentration of TSP adn PM-10 were highest in winter season compared to other seasons. Second, the concentration of Al, Fe, Mn were higher in TSP than in PM-10, indicating that these metals are generally associate with natural contributions. Third, a hierarchical clustering technique was used to group 9 metals. The results from the cluster analysis of TSP and PM-10 shows a similar clustering pattern : Fe, Al in a group and the rest of the metals such as Ni, Cr, As, Mn, Cd, Pb, Zn in the other group. One group of metal such as Fe, Al is associated with natural sources such as soil and dust. The other is closely related to urban anthropogenic sources such as fuel combustion, incineration, and refuse burning, Finally, using Al as a reference element, enrichment factors were used for identifying the major particulate contributors. The enrichment factors of Al. Fe<10 (standard value of enrichment factor) were considered to have a significant dust and soil source and termed nonenriched. Ni, Cr, As, Mn, Cd, Pb, Zn》10 is enriched and has a significant which is contributed by athropogenic sources.

  • PDF

Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing (가로세로비가 큰 항공기 날개의 다분야 통합 최적설계를 위한 자동화 공력-구조 연계 시스템 개발)

  • Jo, Dae-Sik;Yoo, Jae-Hoon;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.716-726
    • /
    • 2010
  • In this research, design optimization of an aircraft wing has been performed using the fully automated Multidisciplinary Design Optimization (MDO) framework, which integrates aerodynamic and structural analysis considering nonlinear structural behavior. A computational fluid dynamics (CFD) mesh is generated automatically from parametric modeling using CATIA and Gambit, followed by an automatic flow analysis using FLUENT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Interaction between CFD and CSM is performed by a fully automated system. The Response Surface Method (RSM) is applied for optimization, helping to achieve the global optimum. The optimization design result demonstrates successful application of the fully automated MDO framework.

Flight Range and Time Analysis for Classification of eVTOL PAV (eVTOL PAV 유형별 항속거리 및 항속시간 분석)

  • Lee, Bong-Sul;Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.73-84
    • /
    • 2020
  • To overcome ground congestions due to growing number of cars, a lot of companies have proposed personal aerial vehicle (PAV). Among PAV, electric vertical take-off and landing (eVTOL) aircrafts capable of vertical take-off and landing with electric power are drawing attention, and their configurations vary from multicopters to tilt ducted fans. This study tries to analyze the characteristics of each eVTOL design configurations. Parasite drag was calculated using component build up method for Vahana, Aurora, Volocopter representing each eVTOL PAV type of tilt-wing, compound, and multicopter. Wetted area and induced drag was calculated using OpenVSP and XFLR5 that are aircraft design and aerodynamic analysis software. The batteries used in the eVTOL PAV was assumed as Tesla 2170 batteries and flight ranges were calculated. Also, energy consumption and maximum flight time for the given mission profile including take-off and landing, cruising segments were compared for each eVTOL.

Design optimization of the staking line for an electric fan blade using CFD (CFD를 이용한 선풍기 날개의 스태킹 라인 최적 설계)

  • Park, Seunghwan;Ryu, Minhyoung;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.903-910
    • /
    • 2014
  • Electric fans, which consist of axial blades, are operated by the induction motor. In this paper, the objective of this study is the performance improvement of the base model fan using the design optimization. In order to aerodynamic analysis, computational simulations are performed using commercial tool ANSYS-CFX ver. 14.5. And k-${\omega}$ SST turbulence model is used for the CFD analysis. The design variables are set up as sweep and lean angles. Volumetric flow rate and torque of the fan blades are fixed to objective function. The optimized model is shown the increment of the volumetric flow rate and the reduction of the torque compared with the base model. The experimental procedure is followed KS C 9301. CFD results and experimental results are fairly well matched.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

Study of Critical Flutter Velocities of Bridge Girder Sections with Different Structural Stiffness (구조 강성에 따른 교량 구조물의 임계 플러터 속도 연구)

  • 박성종;권혁준;김종윤;한재흥;이인
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Numerical analysis of wind effects on civil engineering structures was performed. Aerodynamic effect often becomes a governing factor and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aeroelastic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Navier-Stokes equations were used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes. Critical flutter velocities were computed for bridges with different stiffness. It was confirmed that the critical flutter velocity of bridge girder section was sensitive to the change of structural stiffness.

Clinical Characteristics of Functional Dysphonia (기능성 발성장애의 임상적 특성)

  • Suh, Woo-Jung;Hong, Young-Hye;Choi, Jong-Min;Jung, Eun-Jung;Sung, Myung-Whun;Kim, Kwang-Hyun;Kwon, Tack-Kyun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2006
  • Background and Objectives : Functional dysphonia is a voice disturbance in the absence of structural or neurologic laryngeal pathology characterized by voluntary misuse of laryngeal muscles. The present report reviews clinical characteristics of 25 patients with functional dysphonia. Materials and Method : We analyzed medical records, perceptual and acoustic analysis of voice samples, aerodynamic studies and laryngoscopy. Results : There was no sex or age predilection. Eighty four percent of patients presented sudden onset of symptoms and 76% had specific events at the onset. Most patients showed breathy or strained voice and various degree of vocal fold insufficiency with supraglottic compensatory contractions. Acoustic analysis revealed non-diagnostic, but mean flow rate was lower than normal in all cases. All patients responded to voice therapy except for 4 patients who were tort to follow up. Mean number of voice therapy sessions required to get responses is 1.9 sessions. Conclusion : We concluded that patients with functional dysphonia responded very well to short-term voice therapy and should be included in differential diagnosis in patients with dysphonia cannot be explained by structural or neurologic etiology.

  • PDF