• 제목/요약/키워드: Aerobic biological treatment

검색결과 151건 처리시간 0.018초

돈사폐수의 고온 호기성 소화공정 적용 타당성 평가 (Evaluation of Autoheated Thermophilic Aerobic Digestion Process for the Treatment of Pig Manure Wastewater)

  • 정윤진;조종복;이진용;이종형
    • 유기물자원화
    • /
    • 제3권2호
    • /
    • pp.103-114
    • /
    • 1995
  • 현재 미국이나 캐나다에서는 고농도 유기성 폐수의 처리에 대한 고온 호기성 소화 공정의 여러 가지 장점으로 인하여 활발한 연구 및 적용이 진행되고 있으며, 국내에서도 고농도 유기성 폐수 처리의 여러 문제점으로 관심이 고조되고 있다. 따라서 본 연구에서는 돈 분뇨 폐수를 대상으로 고온 호기성 소화 공정의 적용 타당성을 평가하기 위한 실험을 수행하였다. 그 결과 호기성 소화 슬럿지는 악취 및 부패 등의 측면에서는 상당히 안정화됨으로서 소화슬럿지의 습식사료화 및 액비화의 가능성을 보여주었다. 그러나 습식사료화는 국내 양돈 농가가 대부분 건식 사료 급이 체제를 이루고 있으므로 사료 급이 체제의 전환이 요구되고, 액비화의 경우는 초지 확보가 가능한 단위 농장에서만 적용이 가능하리라고 사료된다. 한편 고온 호기성 소화조의 온도 상승 원인을 조사한 실험 결과에 의하면 생물학적 활성으로 인하여 발생한 에너지보다 교반 에너지에 의한 온도상승이 훨씬 큰 것으로 나타나고 있어 ATAD의 기본 원리에 어긋나고 있어 고온 호기성 소화를 거친 돈 분뇨 폐수가 습식 사료화 될 수 없는 여건하에서 단순한 폐수 처리의 목적만으로 고온 호기성 소화조를 적용하는 것은 비경제적이라고 할 수 있다.

  • PDF

상향류식 바이오비드 공법을 이용한 오·폐수 처리특성 및 부착 생물막의 형태적 특징 (Treatment Kinetics of Wastewater and Morphological Characteristics of Biofilm in Upflow Biobead® Process)

  • 염규진;이정훈;김선미;최원석
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.201-212
    • /
    • 2002
  • The objective of this study was to investigate the treatment efficiency, kinetics, and morphological characteristics of biofilm in upflow $Biobead^{(R)}$ process, a kind of biological aerated filter(BAF). The $Biobead^{(R)}$ system showed high removal rates of $COD_{Mn}$(76~83%), $BOD_5$(67~88%) and SS(71~91%) for food wastewater with high salt concentration ($>4,000mg/{\ell}$) under short reaction times(2~3hrs). Even at aerobic condition, the system had high treatment efficiency for both T-N (51~63%) and T-P(62~81%). The removal kinetics of $COD_{Mn}$, $BOD_5$, T-N, T-P, and $Cl^-$ in the $Biobead^{(R)}$ system showed a plug-flow pattern with reaction rate constants($hr^{-1}$) of 0.58, 0.63, 0,30, 0.48, and 0.38 respectively. A backwashing process to remove excess biomass and filtered solids was needed at least once during 22-hour operation at $0.5kg\;BOD\;m^{-3}{\cdot}d^{-1}$ loading. At the higher loading($1.0kg\;BOD\;m^{-3}{\cdot}d^{-1}$) the backwashing interval was shorten by 8 hours. The COD, BOD, T-N, and T-P were removed from 43 to 66% only by aerobic biodegradation. The SS was removed over 70% by the filtering of $Biobead^{(R)}$ media in the treatment system. The first one of three serial Biobead reactors showed the highest removal values for $COD_{\alpha}$(52.3%), $COD_{Mn}$(38.8%), BOD(62.5%), and T-N(40.0%). The SS and T-P had the highest removal values(47.5% and 29.2%) at the second one of the serial reactors. The biofilm had non-homogeneous spatial distribution and the colonies were embedded in the sunk area of the Biobead. The thickness of the biofilm was very thin ($5.0{\sim}29.4{\mu}m$) compared to the biofilm thickness($200{\sim}300{\mu}m$) used in other BAF systems.

Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process

  • Tong, Shuang;Zhao, Yan;Zhu, Ming;Wei, Jing;Zhang, Shaoxiang;Li, Shujie;Sun, Shengdan
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.309-315
    • /
    • 2020
  • Slaughterhouse wastewater (SWW) is characterized as one of the most harmful agriculture and food industrial wastewaters due to its high organic content. The emissions of SWW would cause eutrophication of surface water and pollution of groundwater. This study developed a pilot scale anaerobic-aerobic slaughterhouse wastewater treatment process (AASWWTP) to enhance the chemical oxygen demand (COD) and total nitrogen (TN) removal. The optimum supernatant reflux position and ratio for TN removal were investigated through the modified Box-Behnken design (BBD) experiments. Results showed that COD could be effectively reduced over the whole modified BBD study and the removal efficiency was all higher than 98%. The optimum reflux position and ratio were suggested to be 2 alure and 100%, respectively, where effluent TN concentration was satisfied with the forthcoming Chinese discharge standard of 25 mg/L. Anaerobic digestion and ammonia oxidation were considered as the main approaches for COD and TN removal in the AASWWTP. The results of inorganic nutrients (K+, Na+, Ca2+ and Mg2+) indicated that the SWW was suitable for biological treatment and the correspondingly processes such as AASWWTP should be widely researched and popularized. Therefore, AASWWTP is a promising technology for SWW treatment but more research is needed to further improve the operating efficiency.

Effect of aerobically treated manure on odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.308-316
    • /
    • 2022
  • Objective: This study was conducted to determine reduction of various odorous materials from a swine farm equipped with a continuous pit recirculation system (CPRS) with aerobically treated liquid manure. Methods: The CPRS is used in swine farms in South Korea, primarily to improve air quality in pig houses. In this study, CPRS consists of a manure aerobic treatment system and a fit recirculation system; the solid fraction is separated and composted, whereas the aerobically treated liquid fraction (290.0%±21.0% per day of total stored swine slurry) is continuously returned to the pit. Four confinement pig barns in three piggery farms were used; two were equipped with CPRS and the other two operated a slurry pit under the slatted floor. Results: All chemical contents of slurry pit manure in the control were greater than those of slurry pit manure in the CRPS treatment (p<0.05). Electrical conductivity and pH contents did not differ among treatments. The biological oxygen demand of the slurry pit treatment was greater than that of the other treatments (p<0.05). Total nitrogen, total phosphorus, and ammonia nitrogen contents of the slurry pit treatment were greater than those of other treatments (p<0.05). Odor intensity of the CPRS treatment was lower than that of the control at indoor, exhaust, and outside sampling points (p<0.05). The temperature and carbon dioxide of the CPRS treatment in the pig barn was significantly lower than those of control (p<0.05). All measured odorous material contents of the CPRS group were significantly lower than those of the control group (p<0.05). Conclusion: The CPRS application in pig farms is considered a good option as it continuously reduces the organic load of animal manure and lowers the average odorant concentration below the threshold of detecting odorous materials.

Measurement of Ordinary Heterotrophic Organism Active Biomass in Activated Sludge Mixed Liquor: Evaluation and Comparison of the Quantifying Techniques

  • Lee, Byung Joon;Wentzel, Mark;Ekama, George;Choi, Yun Young;Choi, Jung Woo
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.91-99
    • /
    • 2014
  • Ordinary heterotrophic organism (OHO) active biomass plays key roles in biological wastewater treatment processes. However, due to the lack of measurement techniques, the OHO active biomass exists hypothetically within the design and simulation of biological wastewater treatment processes. This research was purposed to develop a quick and easy quantifying technique for the OHO active biomass applying a modified batch aerobic growth test. Two nitrification-denitrification activated sludge systems, with 10- and 20-day sludge ages, were operated to provide well-cultured mixed liquor to the batch tests. A steady state design model was firstly applied to quantify the "theoretical" OHO active biomass concentration of the two parent systems. The mixed liquor from the parent systems was then inoculated to a batch growth test and a batch digestion test to estimate the "measured" OHO active biomass concentration in the mixed liquor. The measured OHO active biomass concentrations with the batch growth test and the batch digestion test were compared to the theoretical concentrations of the parent system. The measured concentrations with the batch growth test were generally smaller than the theoretical concentrations. However, the measured concentrations with the batch aerobic digestion tests showed a good correlation to the theoretical concentrations. Thus, a different microbial growth condition (i.e., a higher food/biomass ratio) in the batch growth test, compared to the parent system or the batch digestion test, was found to cause underestimation of the OHO active biomass concentrations.

1차 화학 처리된 닭 가공 폐수의 생물학적 처리에 의한 유기물 및 질소제거에 관한 연구 (Study on Organic Matter and Nitrogen Removal by Biological Treatment of Wastewater Processing of Chicken, which is the Primary Chemical Processing)

  • 한형석;최용구;송진호;김호
    • 한국수자원학회논문집
    • /
    • 제47권3호
    • /
    • pp.247-256
    • /
    • 2014
  • 도계량을 현재의 2배까지 증가시킬 예정인 닭 가공 업체인 A사의 생물학적 처리조를 대상으로 하여 처리효율을 2배까지 높이는 방안을 모색하였다. 이를 위해 MLSS 농도가 증가할 경우 이에 따른 유기물 및 질소 제거 효율증가에 대한 근거를 확보하고자 연구를 진행하였다. 연구는 닭 가공 폐수를 1차 화학 처리한 가압부상처리수를 대상으로 진행되었으며 SBR 형태로 진행되어 호기조 상태 25시간 운전 후, 무산소조 상태 5시간으로 운전되었다. MLSS 12,700mg/L로 진행된 실험 결과 호기조 상태 25시간 이내에 질산화가 완벽하게 일어났으며 C/N비 3 : 1 이상 실험군에서의 탈질효율도 90%를 초과하였다. 후에 진행된MLSS 농도대비 유기물 및 질소제거 효율비교에서는 MLSS 농도를 5,600에서 12,700mg/L까지 변화시켰으며 MLSS 농도 10,800mg/L 실험군에서 유기물과 총 질소 농도 모두 배출허용기준치를 만족하는 결과를 보였다.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • 한국축산시설환경학회지
    • /
    • 제11권2호
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Fumaric acid와 mild heat의 병합 처리에 따른 시금치의 저장 중 미생물 제어 효과 (Combined Treatment of Fumaric Acid with Mild Heat to Inactivate Microorganisms on Fresh Spinach during Storage)

  • 손현정;강지훈;오덕환;민세철;송경빈
    • Journal of Applied Biological Chemistry
    • /
    • 제59권1호
    • /
    • pp.69-74
    • /
    • 2016
  • 시금치에 fumaric acid와 mild heat의 병합처리를 통해 병원성 미생물 제어효과를 규명하고자 시금치에 E. coli O157:H7, L. monocytogenes 를 접종한 후 각 단일처리 후 미생물 수 변화를 측정하였다. Fumaric acid (0.1, 0.3, 0.5%)와 mild heat (40, 50, $60^{\circ}C$)의 각 단일처리 실험 결과를 토대로, 병합처리를 위한 fumaric acid의 최적농도는 0.5%, mild heat 처리조건으로 $50^{\circ}C$에서 5 min으로 선정하였고, 병합처리 시 L. monocytogenes, E. coli O157:H7의 수는 대조구에 비해 각각 2.53, 2.62 log CFU/g 감소하였다. 그리고 신선한 시금치에 병합처리 후 $4^{\circ}C$에서 12일간 저장하면서 미생물 수 감소 및 품질 변화를 조사하였다. 시금치의 초기 미생물 수에 있어서 대조구와 비교하여, 병합 처리구에서 총 호기성 균을 2.77 log CFU/g 감소시켰다. 특히, 저장 12일 후 병합 처리구의 총 호기성 균 수는 4.84 log CFU/g으로 대조구와 비교하여 1.82 log CFU/g의 감균 효과를 가졌다. 또한 시금치의 저장 중 Hunter 색도 값 및 비타민 C 함량에 있어서 처리구 간의 유의적인 차이를 보이지 않았다. 따라서 본 연구 결과, fumaric acid와 mild heat의 병합처리가 시금치의 미생물학적 안전성 유지에 효과적인 처리라고 판단된다.

SAB 고율미생물반응기를 이용한 축산폐수처리의 성능 평가 (Estimation of Cattle Wastewater Treatment using Singang Advance Biology Reactor (SAB))

  • 임봉수;김도영;박성순
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.727-734
    • /
    • 2009
  • This study was carried out to evaluate the high rate biological reactor such as lab scale reactor before the application in site, and to get the basic data for possibility using liquid fertilizer with the effluent from biological reactor when the centrifugal machine was applied. The total volume of this reactor in 6 L, in composted of anoxic reactor (2 L), aerobic reactor (2 L), and nitification reactor (2 L). BOD removal efficiency rates when centrifugal machine was applied after effluent from biological reactor are over than 95%. This biological reactor was required post process to satisfy the effluent standards, and was need centrifugal machine to control the washout of microbes in the reactor. T-N removal efficiency rate in HRT 24 hr with centrifugation is 80.0%, and it is desirable to operate less than $1.3kgN/m^3{\cdot}d$ for 70% of T-N removal efficiency rate. T-P removal efficiency rate in HRT 24 hr is 68.2%, and become higher 71.3% after centrifugation. Considering in the 28.6% T-N removal efficiency rate, the nitrogen contents of the effluent from reactor is 0.34% to satisfy the liquid fertilizer.

Polyvinyl Alcohol 분해 공생 균주에 의한 염색 폐수 중의 PVA 제거

  • 김철기;최용진;이철우;임연택;류재근
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.89-95
    • /
    • 1997
  • The current processer of the textile wastewater treatment are mostly consisted of a combination of a physico-chemical and a biological treatment. The overall efficiency of these processes is, however, assessed to be fairly low. It is even worse during the summer season when temperature of the wastewater rises above 40$\circ $C. Therefore, a feasible process of the textile wastewater treatment which can work efficiently at higher temperatures was investigated in this work. We used a bench scale reactor consisted of one 4 liter anaerobic and one 8 liter aerobic tank, and the thermophilic symbiotic PVA degraders, Pasteruella hemolytica KMG1 and Pseudomonas sp. KMG6 that had been isolated in our laboratory. In the preliminary flask experiments, we observed that the thermophilic symbiotic PVA degraders could not grow in the wastewater substrate. Then, we isolated the mutant strains by acclimating the KMG1and KMG6 strains to the wastewater medium. The mutant symbionts (KMG1-1 and KMG6-1) were isolated through 6 times successive transfers into the fresh wastewater medium after 5 days culture for each. The mutant strains obtained grew well in the mixed medium composed of 75% wastewater and 25% synthetic medium, and supplemented with 0.5% PVA as a sole carbon source. During the culture for 14 days at pH 7.0 and 40$\CIRC $C, the bacteria assimilated about 89% of the added PVA. The symbionts degraded equally well all the PVA substrates of different molecular weight (nd=500~30000). In contrast to the flask experiments, in the reactor system the mutant strains showed very low levels of the PVA and COD removal rates. However, the new reactor system with an additional aerobic tank attained 82% removal rate of COD, 94% of PVA degradation and 71% of color index under the conditions of 5% inoculm on the tank 2, incubation temperature of 40$\circ $C, dissolved oxygen level of 2~3 mg/l and retention time of 30 hours. This result ensures that the process described above could be an efficient and feasible treatment for the PVA contained textile wastewater at higher temperatures.

  • PDF