• 제목/요약/키워드: Aerobic SBR

검색결과 78건 처리시간 0.021초

연속회분식반응기(SBR)에 의한 낙농폐수의 호기성처리에서 휘발성유기물질 발생 (Volatile Organic Compounds Production from Aerobic Biotreatment of Dairy Wastewater by a Sequencing Batch Reactor)

  • 홍지형
    • 한국축산시설환경학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2005
  • 본 연구는 호기성 연속회분식반응기(SBR)에서 낙농폐수의 생물학적처리 과정에서 발생되는 휘발성 유기물질 발생량을 분석한 것이다. 호기성처리 상태에서 악취성분인 휘발성 지방산(VFAs) 및 휘발성 유기물질(VOCs)은 원래 상태보다도 크게 감소하였다 호기성 연속회분식반응기에서 휘발성지방산은 1,450 mg/L 이하를 나타내고 있었다. 축산폐수처리과정에서 악취처리는 호기성연속회분식반응기(SBR) 처리 기술이 효과적인 방법이라고 확인되었다. 호기성 연속회분식반응기 시스템은 고액분리된 액상물의 악취물질 제거에 사용될 수 있었다.

  • PDF

초음파 결합형 SBR 호기성 소화 모델과 영향 예측 (Performance Evaluation of Hybrid SBR Aerobic Digestion combined with Ultrasonication by using a Mathematical Model)

  • 김성홍;이동우;김동한
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.897-905
    • /
    • 2012
  • Based on the activated sludge model, a simple aerobic digestion model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) equipped with ultrasonicator was composed and performed in this study. The results are as follows. Aerobic digestion efficiency can be increased by adopting ultrasonic pretreatment. For the 5 days of SRT, 24 % of particulate component is predicted to be removed by ultrasonic pretreatment and aerobic digestion. This is 7 %p higher than that of conventional aerobic digestion. A Hybrid SBR aerobic digestion combined with ultrasonication shows higher digestion efficiency than aerobic digestion and ultrasonic pretreatment system. In case of this hybrid system, the digestion efficiency was predicted up to 49 % when the ultrasonication was performed every 2 hours, repeatedly. However, excessive treatment like every hours of ultrasonication in an aerobic digestion process results in adverse effect on TCOD removal because biomass disintegrated completely and the solubilized COD can not be used for the biomass synthesis again.

액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구 (Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment)

  • 홍지형
    • 한국축산시설환경학회지
    • /
    • 제14권2호
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

초음파 결합형 SBR 호기성 소화의 모델과 매개변수의 보정 (Numerical Model for SBR Aerobic Digestion Combined with Ultrasonication and Parameter Calibration)

  • 김성홍;이인호;윤정원;이동우
    • 상하수도학회지
    • /
    • 제27권4호
    • /
    • pp.457-468
    • /
    • 2013
  • Based on the activated sludge model(ASM), a mathematical model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) combined with ultrasonic treatment was composed and performed in this study. Aerobic digestion using sequencing batch reactor(SBR) equipped with ultrasound treatment was also experimented for the purpose of parameter calibration. Most of the presented kinetic parameters in ASM or ASM2 could be used for the aerobic digestion of sludge but the parameters related in hydrolysis and decay rate needed modification. Hydrolysis rate constant of organic matter in aerobic condition was estimated at $0.3day^{-1}$ and the maximum growth rate for autotrophs in aerobic condition was $0.618day^{-1}$. Solubilization reactions of particulate organics and nitrogen by ultrasonication was added in this kinetic model. The solubilization rate is considered to be proportional to the specific energy which is defined by specific ultrasound power and sonication time. The solubilization rate constant by ultrasonication was estimated at $0.202(W/L)^{-1}day^{-1}$ in this study. Autotrophs as well as heterotrophs also decomposed by ultrasonic treatment and the nitrification reaction was limited by the lack of autotrophs accumulation in the digester.

무산소 조건에서의 인섭취를 이용한 생물학적 영양염류 제거 (Biological Nutrient Removal by Enhancing Anoxic Phosphate Uptake)

  • 이대성;전체옥;박종문
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.861-867
    • /
    • 2000
  • 무산소 조건에서의 인섭취를 이용한 질소, 인 화합물의 동시 제거 가능성을 연속회분식반응기(SBR)를 사용하여 고찰하였다. 혐기-호기상의 AO SBR 반응기에 점차적으로 무산소상을 도입함으로써 질산염을 전자수용체로 사용하여 탈질이 가능한 인섭취 미생물들(DPAOs)을 다량으로 축적하였다.(혐기-호기-무산소-호기상의 $(AO)_2$ SBR). 무산소상과 호기상에서의 인섭취율을 비교해 보았을 때, 전체 인제거 미생물 내에서 DPAOs의 비율이 약 10%에서 64%까지 증가하였다. $(AO)_2$ SBR은 안정된 질소, 인제거 성능을 보였으며, 유기물질, 질소, 인 화합물의 제거율은 각각 92%, 88%, 100%였다. $(AO)_2$ SBR의 운전결과와 회분식 실험으로 부터 아질산염은 무산소상에서의 인제거 반응에 어떠한 악영향도 미치지 않으며, 오히려 질산염과 함께 전자 수용체로 사용되어짐을 알 수 있었다.

  • PDF

SBR에서 호기성 입상슬러지의 형성 (Shape and Formation of Aerobic Granulation in SBR)

  • 윤주환;장희란;한종훈;한혜정
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.534-538
    • /
    • 2004
  • Granulation characteristics have been studied with an aerobic sequencing batch reactor(SBR). Organic loading of 2.46kg COD/$m^3$/day followed by 4.14kg COD/$m^3$/day had been applied to the lab-scale SBR with a very short settling time during the operating cycle. The granulation proceeded to the diameter range of 3 to 5 mm with MLSS concentration of 12,000mg/L at 45th days of operation while COD removal efficiency remained almost consistent after the granule formation. It has been noticed that aerobic granulation under the higher loading with a very short settling time seemed to be due to the microbial selection of better flocculating species.

수치실험을 통한 초음파 결합형 SBR 호기성 소화의 거동 예측 (Performance Estimation of SBR Aerobic Digestion Combined with Ultrasonication by Numerical Experiment)

  • 김성홍;김동한;이동우
    • 상하수도학회지
    • /
    • 제27권6호
    • /
    • pp.815-826
    • /
    • 2013
  • Using a developed mathematical model and calibrated kinetic constants, numerical experiments for a aerobic digestion of wastewater sludge by SBR aerobic digestion process combined with ultrasonication (USSBR) were performed in this study. It simulated well the phenomena of the decomposition of particulate organics and the release of organic nitrogen and transformation. To achieve 40 % of particulate organics removal, USSBR process requires only 6 days of SRT and 14 W/L of ultrasonic power whereas SBR aerobic digestion process requires 12 days of SRT. Based on the model simulation results, an empirical equation was presented here. This equation will be used to predict digestion efficiency for the given variables of SRT and ultrasonic power dose. USSBR aerobic digestion process can reduce the nitrogen concentration. The optimal operation strategy for the simultaneous removal of solids and soluble nitrogen in this process is estimated to 7 days of SRT with 14 W/L of ultrasonic power dose while anoxic period was 6 hours out of 24 hours of cycle time. In this condition, 40 % of particulate organics as well as 36 % of total nitrogen will be removed and the soluble nitrogen concentration of the centrate will be lower less then 40 mg/L.

Verification of Enhanced Phosphate Removal Capability in Pure Cultures of Acinetobacter calcoaceticus under Anaerobic/Aerobic Conditions in an SBR

  • Kim, Hyung-Jin;Krishna R. Pagilla
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.335-339
    • /
    • 2002
  • Laboratory experiments were conducted using pure cultures of Acinetobacter under an-aerobic/aerobic cyclic conditions to explain the release and uptake of soluble phosphate in an activated sludge process showing enhanced biological phosphate removal (EBPR). Under anaerobic/aerobic cyclic conditions in a Sequencing Batch Reactor (SBR), COD uptake concurrent with soluble phosphate release by Acinetobacter was not significant during the anaerobic periods, indicating that EBPR would not be established in pure cultures. However Acinetobacter cells accumulated higher phosphate content (5.2%) in SBR than that obtained (4.3%) from batch experiments. These results suggest that Acinetobacter sp. may not follow the proposed pattern of behavior of poly-P bacteria in EBPR activated sludge Plants.

Effects of Aerobic and Non-Aerobic Starvation on SBR Performance When Treating Saline Wastewater

  • Moon, Byung-Hyun;Park, Kyung-Hun;Kim, Sang-Soo;Yoon, Cho-Hee
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.139-144
    • /
    • 2012
  • In this study, the effects of starvation on floc characteristics when treating saline wastewater using a sequencing batch reactor (SBR) were investigated. The effectiveness over 5 days of starvation for aerobic and non-aerobic strategies for maintaining the physical characteristics of floc-forming sludge and the recovery period needed to regain the initial pollutant removal efficiency were investigated. Experiment results revealed that the sludge volume index (SVI) increased and the floc size and fractal dimension decreased after starvation under both aerobic and non-aerobic conditions. Sludge settleability deteriorated faster under aerobic conditions compared to non-aerobic conditions. Under non-aerobic conditions, the SBR required less time to return to its initial pollutant removal efficiency and settleability. Floc size, fractal dimension, and SVI were observed to be fairly correlated with each other. The results demonstrated that it was better to maintain the sludge under non-aerobic rather than aerobic starvation, because it adapted to, resisted starvation and had a quicker re-start afterward.

Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화 (Nitrification and Denitrification by Using a Sequencing Batch Reactor System)

  • 박종호;이원호;조규석;황규덕
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.