• Title/Summary/Keyword: Aero-aquatic

Search Result 2, Processing Time 0.016 seconds

Mitrula aurea sp. nov., A New Aero-Aquatic Species from the Republic of Korea

  • Sung-Eun Cho;Hyung So Kim;Young-Nam Kwag;Dong-Hyeon Lee;Jae-Gu Han;Chang Sun Kim
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.213-218
    • /
    • 2022
  • The genus Mitrula (Mitrulaceae, Helotiales), as also known as swamp beacons, inhabits submerged, decaying vegetation in standing or decaying needles, twigs, leaves, and shallow water. They play an important role in carbon cycling in some freshwater ecosystems. In the herbarium of the Korea National Arboretum (KH), seven Mitrula specimens were collected during mushroom forays in the period from 2019 to 2021. The Korean collections were found to be macromorphologically closely related to M. paludosa and M. elegans, but micro-morphologically they could be distinguished by characteristics of slightly narrower asci and aseptate ascospores. Our molecular phylogenetic analyses of the internal transcribed spacer (ITS) and 28S rDNA regions also revealed that our specimens were related to M. paludosa and M. elegans, but formed a distinct clade. Based on these results, we reported our specimens as new to science and discussed the phylogeny and diversity of Mitrula species.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.