• 제목/요약/키워드: Aero Acoustic

검색결과 63건 처리시간 0.019초

팬헤드의 단순 형상 모델을 이용한 판토그라프 공력소음 발생 특성 분석 및 저감 방안 (Analysis of Aerodynamic Noise Generation from Pantograph Using Panhead Models of Simple-Geometry and Its Reduction)

  • 이석근;양원석;고효인;박준홍
    • 한국철도학회논문집
    • /
    • 제15권6호
    • /
    • pp.531-536
    • /
    • 2012
  • 판토그라프 팬헤드의 공력소음 발생의 주요 인자와 영향을 미치는 변수를 분석하였다. 팬헤드 주변의 유체 유동과 결과적인 소음 방사를 분석하기 위해, 수치해석적인 방법 중 하나인 격자볼츠만 방법으로 팬헤드 단순모델을 사용했다. 풍동실험을 통해 측정된 결과로 시뮬레이션 결과를 검증했다. 와흘림이 주요한 공력소음 발생원인이며 Strouhal수, 유체의 속도 및 판토그라프의 형상에 영향을 받았다. 이 논문에 사용된 직사각형 형상을 통해 양력의 발생을 증가시키면서 방사 소음을 줄이는 팬헤드의 설계가 가능함을 제시하였다. 또한 통로나 유선 형상을 이용해 와흘림을 최소로 줄이면, 방사 소음을 크게 저감하는 형상의 설계가 가능함을 구축된 해석모델을 이용하여 검증하였다.

세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION)

  • 문바울;김재소
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

저소음 청소기 개발 (Low Noise Vacuum Cleaner Design)

  • 주재만;이준화;홍승기;오장근;송화규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.939-942
    • /
    • 2007
  • Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.

  • PDF