• Title/Summary/Keyword: Aerial stem

Search Result 93, Processing Time 0.026 seconds

Effects of Plant Density on Growth and Root Yield at Different Harvesting Year in Astragalus membranceus (황기 재식거리(栽植距離)가 수확년차별(收穫年次別) 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Seo, Jeong-Sik;Kim, Ki-Sik;Soh, Ho-Sob;Park, Seung-Ue;Son, Su-Gyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.140-145
    • /
    • 1995
  • This experiment was carried out to investigate the effect of plant spacing on the growth and root yield at different harvesting year in Astragalus membranceus. A local variety collected in Jung Sun. Kang Won was used on the 30 and 40cm row spacing, with different spacing between plant of 5, 10, 15, 20cm respectively. Nitrogen, phosphorus and potassium fertilizers were applied as 6, 8 and 9kg/10a respectively, with compost of 1,000kg/10a. Branches, root length, root diameter and root weight were increased in the sparse planting compared with the dense planting. But emergence date, flowering date, stem height and node number were not significantly changed with plant spacing. The highest root yield was 211.8kg/10a at the $30{\time}10cm(67\;plants/m^2)$ in 1 year old plants of Astragalus membranceus. In case of two years old plants, branches, node number, root length, root diameter and root weight were increased in the sparse planting compared to the dense planting. But harvesting ratio was decreased in the dense planting, The highest dried root yield was 292kg/10a at the $40{\time}10cm\;(25\;Plants/m^2)$. In case of 3 years old plants, aerial part and root growth pattern were similar to the 2 years old plants, The dried root yield was highest(623kg/10a) in the $40{\time}10cm(25plants/m^2)$.

  • PDF

Effects of Crown Diameter and Nitrogen Topdressing on Growth and Yield of Angelica gigas NAKAI (참당귀(當歸) 묘(苗) 근두직경(根頭直徑)과 질소추비수준(窒素追肥水準)에 따른 생육(生育) 및 수량(收量))

  • Lee, Seoung-Tack;Yu, Hong-Seob;Park, Chun-Geon;Yeon, Kyu-Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.2
    • /
    • pp.97-103
    • /
    • 1993
  • Relationships between crown diameter divided into the small$(0.3{\sim}0.5cm)$, the medium$(0.5{\sim}0.7cm)$ and the large seedling$(0.7{\sim}0.9cm)$ by the size of crown diameter of Angelica gigas and topdressed nitrogen level of 0, 50, 70 and 100% were conducted to study on growth and yield of two year-planted A. gigas in Suwon. The larger of the crown diameter, the better of the dry weight of leaf and root of A. gigas. Growth of the plane was rapidly increased on June and August, but slowly increased on July and that of root was increased until October while decreasing the aerial stem growth from September. Lower top dressed nitrogen level in the larger seeding was greatly increased the bolting rate compared to the medium or small seedlings. Yields of dried root weight per 10a were 441kg for the large, 373kg for the medium, and 378kg for the small seedling, and weight of the higher nitrogen per 10a were more increased than that of the lower dressed nitrogen treatment.

  • PDF

Carbon Reduction and Enhancement for Greenspace in Institutional Lands (공공용지 녹지의 탄소저감과 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.