• Title/Summary/Keyword: Aerial images

Search Result 705, Processing Time 0.027 seconds

Study on Reflectance and NDVI of Aerial Images using a Fixed-Wing UAV "Ebee"

  • Lee, Kyung-Do;Lee, Ye-Eun;Park, Chan-Won;Hong, Suk-Young;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.731-742
    • /
    • 2016
  • Recent technological advance in UAV (Unmanned Aerial Vehicle) technology offers new opportunities for assessing crop situation using UAV imagery. The objective of this study was to assess if reflectance and NDVI derived from consumer-grade cameras mounted on UAVs are useful for crop condition monitoring. This study was conducted using a fixed-wing UAV(Ebee) with Cannon S110 camera from March 2015 to March 2016 in the experiment field of National Institute of Agricultural Sciences. Results were compared with ground-based recordings obtained from consumer-grade cameras and ground multi-spectral sensors. The relationship between raw digital numbers (DNs) of UAV images and measured calibration tarp reflectance was quadratic. Surface (lawn grass, stairs, and soybean cultivation area) reflectance obtained from UAV images was not similar to reflectance measured by ground-based sensors. But NDVI based on UAV imagery was similar to NDVI calculated by ground-based sensors.

3D Building Reconstruction Using Building Model and Segment Measure Function (건물모델 및 선소측정함수를 이용한 건물의 3차원 복원)

  • Ye, Chul-Soo;Lee, Kwae-Hi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.4
    • /
    • pp.46-55
    • /
    • 2000
  • This paper presents an algorithm for 3D building reconstruction from a pair of stereo aerial images using the 3D building model and the linear segments of building. Direct extraction of linear segments from original building images using parametric building model is attempted instead of employing the conventional procedures such as edge detection, linear approximation and line linking A segment measure function is simultaneously applied to each line segment extracted in order to improve the accuracy of building detection comparing to individual linear segment detection. The algorithm has been applied to pairs of stereo aerial images and the result showed accurate detection and reconstruction of buildings.

  • PDF

Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods (무인항공기와 GIS를 이용한 논 가뭄 발생지역 분석)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.21-28
    • /
    • 2017
  • The main goal of this paper is to assess application of UAV (Unmanned Aerial Vehicle) remote sensing and GIS based images in detection and measuring of rice field drought area in South Korea. Drought is recurring feature of the climatic events, which often hit South Korea, bringing significant water shortages, local economic losses and adverse social consequences. This paper describes the assesment of the near-realtime drought damage monitoring and reporting system for the agricultural drought region. The system is being developed using drought-related vegetation characteristics, which are derived from UAV remote sensing data. The study area is $3.07km^2$ of Wonbuk-myeon, Taean-gun, Chungnam in South Korea. UAV images were acquired three times from July 4 to October 29, 2015. Three images of the same test site have been analysed by object-based image classification technique. Drought damaged paddy rices reached $754,362m^2$, which is 47.1 %. The NongHyeop Agricultural Damage Insurance accepted agricultural land of 4.6 % ($34,932m^2$). For paddy rices by UAV investigation, the drought monitoring and crop productivity was effective in improving drought assessment method.

Extraction of Spatial Information of Facility Using Terrestrial and Aerial Photogrammetric Analysis (지상사진과 항공사진 해석에 의한 시설물 공간정보 추출)

  • Sohn, Duk-Jae;Lee, Seung-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.51-59
    • /
    • 2003
  • This study intended to extract the spatial data and attribute data from the images of terrestrial and aerial photographs and to compile the digital map from the images using various kinds of photogrammetric analysis. The Three Dimensional Frame Model (3DFM) was produced from multiple images of terrestial photographs, and the Three Dimensional Photo Image Model (3DPIM) was made using 3DFM and image patches of terrestrial photo, which is useful for identifying the feature and characteristics of the object. In addition, the spatial data base for the buildings, roads and supplementary facilities in the objective area was updated by the vectorizing procedures with small scale areal photos.

  • PDF

Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV) (무인비행기 (UAV) 영상을 이용한 농작물 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

Selection of Optimal Vegetation Indices and Regression Model for Estimation of Rice Growth Using UAV Aerial Images

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.409-421
    • /
    • 2017
  • Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.

Assessing the Applicability of Sea Cliff Monitoring Using Multi-Camera and SfM Method (멀티 카메라와 SfM 기법을 활용한 해식애 모니터링 적용가능성 평가)

  • Yu, Jae Jin;Park, Hyun-Su;Kim, Dong Woo;Yoon, Jeong-Ho;Son, Seung-Woo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • This study used aerial and terrestrial images to build a three-dimensional model of cliffs located in Pado beach using SfM (Structure from Motion) techniques. Using both images, the study purposed to reduce the shadow areas that were found when using only aerial images. Accuracy of the two campaigns was assessed by root mean square error, and monitored by M3C2 (Multiscale Model to Model Cloud Comparison) method. The result of the M3C2 in closed areas such as sea cave and notch did not express the landforms partly. However, eroded debris on sea cliffs were detected as eroded area by M3C2, as well as in captured pictures by multi-camera. The result of this study showed the applicability of multi-camera and SfM in monitoring changes of sea cliffs.

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.