• Title/Summary/Keyword: Aerial Observation

Search Result 114, Processing Time 0.028 seconds

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Preprocessing for High Quality Real-time Imaging Systems by Low-light Stretch Algorithm

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.585-589
    • /
    • 2018
  • Consumer demand for high quality image/video services led to growing trend in image quality enhancement study. Therefore, recent years was a period of substantial progress in this research field. Through careful observation of the image quality after processing by image enhancement algorithms, we perceived that the dark region in the image usually suffered loss of contrast to a certain extent. In this paper, the low-light stretch preprocessing algorithm is, hence, proposed to resolve the aforementioned issue. The proposed approach is evaluated qualitatively and quantitatively against the well-known histogram equalization and Photoshop curve adjustment. The evaluation results validate the efficiency and superiority of the low-light stretch over the benchmarking methods. In addition, we also propose the 255MHz-capable hardware implementation to ease the process of incorporating low-light stretch into real-time imaging systems, such as aerial surveillance and monitoring with drones and driving aiding systems.

Optimal Design of the Adaptive Searching Estimation in Spatial Sampling

  • Pyong Namkung;Byun, Jong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.73-85
    • /
    • 2001
  • The spatial population existing in a plane ares, such as an animal or aerial population, have certain relationships among regions which are located within a fixed distance from one selected region. We consider with the adaptive searching estimation in spatial sampling for a spatial population. The adaptive searching estimation depends on values of sample points during the survey and on the nature of the surfaces under investigation. In this paper we study the estimation by the adaptive searching in a spatial sampling for the purpose of estimating the area possessing a particular characteristic in a spatial population. From the viewpoint of adaptive searching, we empirically compare systematic sampling with stratified sampling in spatial sampling through the simulation data.

  • PDF

Slope terrain Analysis by using Terrestrial LiDAR Equipment (지상라이다 장비를 이용한 사면지형분석)

  • Ham, Ju-Hyoung;Choi, Seung-Pil;Kim, Mun-Sup;Kim, Uk-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.291-293
    • /
    • 2010
  • Terrestrial LiDAR can be used to accurately measure the 3D slope terrain because it can obtain the entire shape of the object, instead of only a specific location, while not much influenced by the environment, and it can create more dense and precise 3D coordinates than those of aerial LiDAR. Therefore, in this study, subject areas with different terrain conditions were selected, the terrestrial LiDAR device was used to observe the slope terrain, and a slope terrain analysis technique was proposed based on the observation results.

  • PDF

The Coastline Extraction Using RTK GPS/GLONASS

  • Jang, Ho-Sik;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2002
  • On this study, it was applied that the method of Coastline extracting by aerial photogrammetry so as to extract the coastline using the method of RTK GPS/GLONASS. The observed area is Gwanganri beach that is located in Pusan and it was observed according to high wave of scar when the approximate highest high water and it was surveyed according to that the boundary line connecting to sea water surface at random time-zone. Observation analysis was used digital map of 1:1,000 and compared coastline that was converted tide with coastline of high tide. So this conclusions was agreed with converted coastline and high tide coastline.

  • PDF

Fault segmentation along the Ulsan Fault System based on criteria of segment type (단층분절을 정의하는 기준에 따른 울산단층의 분절화)

  • Choi, Weon-Hack;Chang, Chun-Joong;Inoue D.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.78-85
    • /
    • 2006
  • The Ulsan Fault System continues from north of Gyeongju to Ulsan city, trending NNW-SSE and is about 50 km. Many Quaternary faults have been reported and investigated with outcrop observation. Lineaments have been extracted with aerial photograph interpretation and classified by their ranks. Trench excavations on the lineaments along Ulsan Fault System have been carried out to clarify the neotectonic movements and fault parameters such as the latest movement age, fault displacement, slip rate and recurrence interval. We have compiled data from previous studies on criteria of segment type such as lineament rank, seismicity, slip rate, and the latest fault movement. Based on these data, we tried to devide the Ulsan Fault System into several segments. The results of segmentation with each types of segment along the Ulsan Fault System did not show singular division point but overlapped or different length and location.

  • PDF

A Development of DDS Based Chirp Signal Generator and X-Band Transmitter-Receiver for Small SAR Sensor (DDS 기반의 소형 SAR 시스템 송수신장비 개발)

  • Song, Kyoung-Min;Lee, Ki-Woong;Lee, Chang-Hyun;Lee, Woo-Kyung;Lee, Myeong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2016
  • UAVs(Unmanned Aerial Vehicle) can be used in variant fields fornot only combat, but also recon, observation and exploration. Moreover, UAVs capacity can be expanded to impossible missions for existing surveillance system such as SAR(Synthetic Aperture Radar) technology that collecting images from all weather conditions. In recent days, with development of highly efficient IC and lightened system technology, there are significant increase of researches and demands to make SAR sensor as a payload of UAV. Therefore, this paper contains development process and results of small signal generator and RF device as a core module of SAR system based on the digital device of DDS.

Co-Registration of Aerial Photos, ALS Data and Digital Maps Using Linear Features (선형기하보정 요소를 이용한 항공레이저측량 자료, 항공사진, 대축척 수치지도의 기하보정에 관한 연구)

  • Lee, Jae-Bin;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.37-44
    • /
    • 2006
  • To use surveying data obtained from different sensors and different techniques, it is a pre-requite step that register them in a common coordinate system. For this purpose, we developed methodologies to register airborne photos, ALS (Airborne Laser Scanning) data and digital maps. To achieve this, conjugate features from these data should be extracted in advance. In this study, linear features are chosen as conjugate features. Based on such a selection strategy, a simple and robust algorithm is proposed for extracting such features from ALS data. Then, to register them, observation equations are established from similarity measurements of the extracted features and the results was evaluated statistically. The results clearly demonstrate that the proposed algorithms are appropriate to register these data.

  • PDF

A Study on the Improvement of Working Methods for cadastral survey Using UAV (UAV를 활용한 지적측량 업무방식 개선에 관한 연구)

  • Ko, Jung-Hyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.169-185
    • /
    • 2019
  • While images and aerial photographs using conventional satellites have the advantage of providing data in a vast area, there is a difficult aspect: the limitations of filming and processing data in a particular region at a desired time and the repetitive filming of a short cycle. With the development of many new technologies to overcome these shortcomings, methods of building cadastral information are changing rapidly. In particular, unmanned aerial vehicles that deploy cadastral information quickly and accurately using UAV have increased interest in technology that obtains cadastral information. Therefore, the purpose of this study was to suggest the application of cadastral measurement tasks in areas subject to cadastral measurement using UAV. To this end, the Commission decided to compare and analyze the accuracy of high-resolution images produced by observation area and apply them to existing cadastral work using verified images and cadastral data. In this study, we will analyze the applicability of UAVs to their cadastral survey by analyzing the current status of legislation related to cadastral survey and the technical characteristics of UAVs and propose technological, legal and institutional improvement measures for introduction based on them.

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.