• Title/Summary/Keyword: Aeration system

Search Result 296, Processing Time 0.026 seconds

Effects and Batch Kinetics of Agitation and Aeration on Submerged Cultivation of Ganoderma Iucidum (영지의 액체배양에 미치는 통기.교반의 효과와 동력학적 특성)

  • 이학수;정재현;이신영
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.307-313
    • /
    • 2001
  • The effects of agitaion and aeration on mycelial growth, exo-polysaccharide (EPS) production, and substrate consumption upon the submerged cultivation of G. lucidum were investigated, and the batch kinetics of the EPS fermentation of G. lucidum were interpreted as function of agitation speed and aeration rate. In a 2.6 L jar fermenter system, the optimum agitation speed and aeration rate for EPS production were determined to be 400 rpm and 1.0 vvm, respectively. The maximum production of EPS obtained was 15 g/L. The logistic model for mycelial growth fitted the experimental data better than that determined by the Monod and the two-thirds power models. The Luedeking-Piret equation adequately modelled the kinetic data obtained for product and substrate.

  • PDF

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Jin Hee Ok
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.109-127
    • /
    • 2024
  • High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.

Development and Field Assessment of DO Control System in an Aeration Tank for Automation of Sewage Treatment Plant

  • Jung, In-Chul;Kim, Dae-Yong;Junq, Byung-Gil
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.603-608
    • /
    • 2009
  • Activated sludge sewage treatment processes are difficult to be controlled because of their complex and nonlinear behaviour, however, the control of the dissolved oxygen level in the reactors plays an important role in the operation of the facility. For this reason, this study is designed to present a system which accurately measures DO, MLSS, pH and ORP in the aeration tank to alleviate situations above and provide the automatization of a sewage treatment plant (STP) using new DO control system. The automatic control systems must be guaranteed the accuracy. Therefore, the proposed automatic DO control system in this study could be commercial applications in the aeration tanks by means of operating cost analysis and user-friendly for operation and maintenance. We could get accurate data from the lab tank which has water quality checker because there was no vortex and air bubble during the measurement process. Improvement of confidence in the lab tank enabled effective and automatic operation of sewage treatment plants so that operation costs and manpower could be saved. If this result is put in place in every sewage treatment plant nationwide for practical purposes, it is estimated to cost 18.5 million dollars in installing the lab tank and to save 9.8 million dollars in management cost a year, except for cost saved by automation.

Evaluation for the simultaneous Removal of Organic Matters and Nutrients by the RBC and tapered Aeration Processes with Bacillus sp. for the high Strength of Dairy Wastewater (바실러스 미생물을 이용한 고농도 유가공 폐수처리에 있어서 유기물질과 영양염류의 동시제거에 대한 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.195-202
    • /
    • 2010
  • The evaluation of organic matters and nutrients removal was investigated for the synthetic wastewater and the high strength of dairy wastewater. Two different systems were performed for this research. System A composing of a single RBC with tapered aeration was fed with the synthetic wastewater for 74 days with 173L/day of influent, 200% of internal return and 100% of sludge return for the period 1 and 2. The feed conditions were maintained 346L/day of influent, 50% of internal return and sludge return for the period 3. The dairy wastewater was introduced to evaluate treatment efficiency for system B composing of dual RBCs and tapered aeration tanks for 50 days of experimental run time, in which hydraulic rates were maintained at the constant ratios of 346L/day, 50% of internal return and 50% of sludge return. The spiral string media made of nylon fibre was attached by Bacillus sp. in RBC for both systems. The specific area of string media was $1.4m^2$/m and biomass was maintained at the concentrations of 23g/m. The synthetic wastewater was supplied by 1,800mg/L of glucose, 500mg/L of $NH_4Cl$, and 500mg/L of $KH_2PO_4$ to system A. The dairy wastewater was supplied to system B from dairy production plant. The average influent concentrations were 1,334mg/L of BOD, 2,014mg/L of CODcr, 160mg/L of T-N, and 12mg/L of T-P in system A. The average influent concentrations of parameters were 1,006 mg/L for BOD, 1,875mg/L for $COD_{cr}$, 51.6mg/L for T-N and 8.9mg/L for T-P in system B. Results indicated that removal efficiencies of BOD and $COD_{cr}$ were more than 90% however, the removal efficiency of T-N was 87%, and that of T-P was 82% for system A. Removal efficiencies were 98.5% of BOD, 91.3% of nitrogen and 89% of phosphorus for system B. The removal efficiencies of organic matters, T-N and T-P were higher in system B than in system A. The effluent quality issued by the stringent national legislations for the discharge of the high strength of dairy products wastewater can be improved using sequential RBCsand tapered aeration reactors rather than a single RBC and tapered aeration reactors with Bacillus sp.

A Study on Energy Usage Monitoring and Saving Method in the Sewage Treatment Plant (공공하수처리시설에서 에너지 사용현황 및 절감방안 연구)

  • Kim, Jongrack;Rhee, Gahee;You, Kwangtae;Kim, Dongyoun;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.535-545
    • /
    • 2020
  • This study aims to conserve and monitor energy use in public sewage treatment plants by utilizing data from the SCADA system and by controlling the aeration rate required for maintaining effluent water quality. Power consumption in the sewage treatment process was predicted using the equipment's uptime, efficiency, and inherent power consumption. The predicted energy consumption was calibrated by measured data. Additionally, energy efficiency indicators were proposed based on statistical data for energy use, capacity, and effluent quality. In one case study, a sewage treatment plant operated via the SBR process used ~30% of energy consumed in maintaining the bioreactors and treated water tanks (included decanting pump and cleaning systems). Energy consumption analysis with the K-ECO Tool-kit was conducted for unit processing. The results showed that about 58.7% of total energy consumed was used in the preliminary and biological treatment rotating equipment such as the blower and pump. In addition, the energy consumption rate was higher to the order of 19.2% in the phosphorus removal process, 16.0% during sludge treatment, and 6.1% during disinfection and discharge. In terms of equipment energy usage, feeding and decanting pumps accounted for 40% of total energy consumed following 27% for blowers. By controlling the aeration rate based on the proposed feedback control system, the DO concentration was reduced by 56% compared pre-controls and the aeration amount decreased by 28%. The overall power consumption of the plant was reduced by 6% via aeration control.

A study on the Simultaneous Removal of Nitrogen and Phosphorus on Reactor Configuration in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지 시스템에서 반응조 형태에 따른 질소 및 인의 동시제거 특성에 관한 연구)

  • Lee, Won-Ho;Seo, In-Seok;Kim, Kwang-Yul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • In this research, single-, two- and four-stage intermittently aerated activated sludge system were investigated for simultaneous removal of nitrogen and phosphorus with swine wastewater. For the comparison of removal efficiency, conventional activated sludge system was operated. Operational conditions of intermittently aerated activated sludge system were SRT 20day, HRT 24hr and aeration/nonaeration time 1hr/1hr, respectively. Nitrogen and phosphorus removal efficiency in Intermittently aerated activated sludge system was upgraded compare with conventional activated sludge system. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ was observed very well but, phosphosrus removal in effluent was not effective. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ in first reactor, was observed very well but, in following reactor, $PO_4^{3-}-P$ concentation showed almost no change. T-N removal efficiency in conventional activated sludge system, single-, two-, and four-stage intermittently aerated activated sludge system were 48, 87, 90.9 and 95.5%, respectively, and phosphorus removal efficiency were 48, 75, 97 and 95%, respectively. Intermittently aerated activated sludge system as a alternative processes of conventional system leads to meet satisfactory effleunt with only on/off aeration regulation and save energy for aeration.

  • PDF

Suppression of Coating Formation in Cement Silo (시멘트 사일로의 적분생성억제)

  • 양승혁;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.16-21
    • /
    • 2003
  • The object of this research is to prevent the industrial accidents which frequently occurred in breaking the coating in cement silo. Research was conducted to identify the cause of the coating formation, and the model experiment of aeration system was done to investigate the effect of moisture air on the coating formation. The results show that dehumidification of supply air in aeration system is the most important factor to suppress the coating formation, and the refrigerated low pressure air dryer applicable to the aeration system of cement silo was newly designed and developed. When this air dryer is applied to the cement silo, 88% of the moisture component of supply air can be reduced. Therefore the cleaning cycle extends over twice, and it contributes to the decrease of industrial accidents and cleaning cost.

A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane (암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구)

  • Kang, Heeseok;Lee, Euijong;Kim, Hyungsoo;Jang, Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

Positive Research About Water Aeration Improvement to Break Thermal Stratification of Dam (댐내 수온성층 파괴를 위한 산기식 수중폭기설비 성능향상 실증연구)

  • Park, Jong-Ho;Ra, Beyong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.37-42
    • /
    • 2014
  • In Korea while the dam or reservoir is an important water resource, the value of this water resource is deteriorating by thermal-induced stratification. To ameliorate the water quality of reservoir by breaking stratification the use of air diffuser system is now widespread in Korea. According to the previous research, dynamics of bubble plume and destratification efficiency depended upon two dimensionless groupings; Mh and Pn suggested by Asaeda et al (1993). However, these two variables only include Q, N, H, g, u. and installed Boryeong reservior in appropriate width of water aeration, air dose and number of installations after calculating by applying these figures. This paper is performed to find out effect analysis about water aeration improvement to break thermal stratification.

Characteristics of Sludge Bulking Caused by Low Dissolved Oxygen in Aeration Tank for Paper Mill Wastewater Treatment (포기조의 낮은 용존산소로 인한 제지폐수의 슬러지 팽화특성)

  • Kwak, Dong-Heui;Yoo, Seung-Joon;Park, Jong-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.458-464
    • /
    • 2008
  • Bulking phenomena and scum formation are common problem in suspended growth system like the activated sludge plants for wastewater treatment. Apart from wastewater composition, operating conditions, such as mechanical stress by insufficient oxygen supply, are often decisive for the occurrence of a bulking or scumming problem. There were the comparative aeration tanks in terms of sludge bulking caused by the difference of mechanical aeration facilities in the wastewater treatment plant of N paper mill company. In this study the cause of bulking was investigated through not only the biological isolation and identification but also a series of operational data consideration. On the basis of the investigation results for bulking cause, the operational criteria on dissolved oxygen concentration was derived to decrease the bulking problem.