• Title/Summary/Keyword: Aeration System

Search Result 297, Processing Time 0.03 seconds

Influences of Bulking Materials on Sustainable Livestock Mortality Composting (부자재 종류가 친환경적 사축퇴비화에 미치는 영향)

  • Won, Seung Gun;Park, Ji Young;Cho, Won Sil;Kwag, Jung Hoon;Choi, Dong Yoon;Ahn, Hee Kwon;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.483-488
    • /
    • 2013
  • To develop a sustainable composting method for livestock mortality, a natural aeration-composting process was designed and the influences of bulking materials on the mortality composting process were studied. Bulking materials (e.g., compost, swine manure, sawdust, and rice husks), easily supplied at the scene of an animal mortality outbreak, were tested in this research. A lab-scale composting system (W34 ${\times}$ L60 ${\times}$ H26 cm) was made using 100 mm styrofoam, and natural aeration was achieved through pipes installed on the bottom of the system. Four treatments were designed (compost, compost + swine feces, sawdust, and rice husks treatment groups) and all experiments were done in triplicates. During composting for 40 days, no leachate was observed in compost and sawdust treatment groups, whereas 18 and 8.2 ml leachate/kg-mortality was emitted from the compost + feces and rice husks treatment groups, respectively. Dimethyl disulfide (DMDS) emission during the composting was very low in all treatment groups, possibly due to the bio-filtering function of the compost cover layer on the pile. The mortality degradability in compost, compost + feces, sawdust, and rice husks groups was 25.3, 25.8, 13.5, and 14.5%, respectively, showing significantly higher levels in compost and compost + feces groups (p<0.05). Also, only the compost + feces group produced enough heat (over $55^{\circ}C$) and lasted for 7 days, indicating that bio-security cannot be guaranteed without feces supplementation.

Optimum Physical Property of Media for the Production of Small Potted Ardisia in Capillary Mat Irrigation System (매트재배에서 Ardisia 소형분화 생산에 적합한 배지의 물리성)

  • Lee, Dong-Soo;Kwon, Oh-Keun;Lee, Young-Ran;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.316-325
    • /
    • 2009
  • Adequate conditions of water content and aeration of container media are major environmental factors in the production of pot plant. This experiment was carried out to find optimum physical property of media for the production of small potted Ardisia in capillary mat irrigation system. The plant materials used in this experiment were Ardisia pusilla and Ardisia japonica. Seven substrates were formulated by blending perlite or fresh rice hulls at 20%, 40%, 60% (v/v) with sphagnum peat. Total pore space (TPS) increased by blending sphagnum peat with fresh rice hulls, but decreased by blending sphagnum peat with perlite. As fresh rice hull (FRH) and perlite content increased, air filled pore space (AFP) of substrate increased but container capacity (CC) decreased. Substrate blended with fresh rice hull was higher AFP than blended with perlite and the rate of increase was higher for FRH-containing substrate. As AFP increased, the $CO_2$ concentration in the pot decreased and the $CO_2$ concentration of substrate blended with FRH was higher than blended with perlite. The fresh and dry weight of Ardisia pusilla and A. japonica was the highest in the substrate contained 60% FRH, but the ratio of shoot dry weight to root dry weight was the lowest. The optimum total pore space, air-filled pore space, water holding capacity of substrate for the growth of Ardisia pusilla and A. japonica in the capillary mat irrigation system were 82.8%, 25.6%, and 57.2% respectively.

Field Investigation of Environment Parameter in Aerobic Composting for Pig Slurry at a Scraper System (스크레파 축사에서 배출되는 돈분뇨슬러리 호기성 퇴비화의 환경요인 현장조사)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.183-192
    • /
    • 2008
  • This study was carried out to investigate the temperature, water balance, evaporation and physicochemical properties during the composting with pig slurry at a scraper system. The pig slurry was composted on farm trial using continuous aeration with turning machine for 5 month. A compost facility of rectangular concrete bin with dimension of 53 m (length) ${\times}$ 4.6 m (width) ${\times}$ 2 m (height) was bedded with sawdust. The environmental parameters were monitored in period of 5 months. The results were as follows ; 1. During the composting period, the temperature was varied in the range $50{\sim}70^{\circ}C$. The temperature of compost pile was highest in middle layer and lowest in under layer. Temperature difference between middle and under area of compost pile was $5{\sim}20^{\circ}C$. 2. The water content of compost pile varied $50{\sim}68%$. In the period of 50% of water content of compost pile, the temperature of compost was $20{\sim}30^{\circ}C$ and was not successfully composted. 3. In this study, total evaporation was 90% during composting. The amount of slurry per $1m^3$ sawdust by this method was $3.16m^3$ without treatment of effluent output. 4. The chemical properties of produced compost was high, but suitable for plant growth. Concentration of T-N, T-C in the final compost were 1.62, 34%, respectively.

  • PDF

Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process (유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향)

  • Yang, Eun-Gyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study was performed to determine the effect of the influent flow distribution ratio and hydraulic retention time(HRT) on removal of organic matter, nitrogen and phosphorus when domestic sewage was treated by the advanced step aeration(ASA) process. Results of the experiment for the determination of the optimum influent flow distribution ratio between the anaerobic reactor and the anoxic reactor showed BOD removal efficiencies of above 92.0% at all influent flow distribution ratios from 9:1 to 4:6. The highest T-N removal efficiency was 82.6% at the influent flow distribution ratio of 6:4. On the other hand, the highest T-P removal efficiency was 67.8% at the influent flow distribution ratio of 9:1. Considering both the T-N and T-P removal efficiencies, the influent distribution ratio of 6:4 was considered the optimum. Results of the experiment for the determination of the optimum HRT at the optimum influent flow distribution ratio of 6:4 revealed BOD removal efficiencies better than 92.7% at all HRTs from 12hr down to 6hr. The highest T-N and T-P removal efficiency were 82.6% and 59.5%, respectively both at the HRT of 8hr. In conclusion, the optimum influent flow distribution ratio and HRT for treatment of domestic sewage by the ASA process were determined to be 6:4 and 8hr, respectively.

Pig slurry treatment by the pilot scale hybrid multi-stage unit system (HMUS) followed by sequencing batch reactor (SBR) (HMUS와 SBR 반응조를 이용한 축분처리에 관한 연구)

  • Lee, Young-Shin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Experiments in a pilot-scale hybrid multi-stage unit system (HMUS) combination of ATAD and EGSB followed by SBR process for pig slurry treatment were conducted to demonstrate the feasibility of using autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig slurry with high organic matter, nitrogen (N) and phosphorus (P) content were completely removed in the combined process. The highest removal rate for CODcr among contaminants in the feed pig slurry was attained by about 43.3% in ATAD unit process. Also TS removal rate of 96.5% was attained and the highest in the next coagulation unit process. The highest removal rate of CODcr under operating parameter conditions of OLR(organic loading rate), 3-6Kg $COD/m^3{\cdot}day$ and line velocity, 1.5-4m/h was earned at 3days of HRT. The disinfection of pathogens was effective at 50,000mg/L of TS in ATAD unit process. Biogas production per organic removal was $2.3{\sim}8.5m^3/kgTS{\cdot}d$ (average $5.2m^3/kgTS{\cdot}d$) in EGSB unit process. The average removal rates of CODcr 71.7%, TS 64.1%, TN 45.9%, and TP 50.4% were earned in the intermittent aeration SBR unit process.

Composting of Small Scale Static Pile by addition of Microorganism (미생물 첨가에 의한 소규모 정체식 퇴비화)

  • Chang, Ki-Woon;Yu, Young-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.149-153
    • /
    • 2003
  • This study was conducted to survey the utilization possibility of composting system of small scale static pile with animal manure produced from cattle shed and the effect of addition of microorganism on the maturity of compost. Microorganisms added in composting substrate were bacteria+lactobacillus(BL)+photo.(BLP). The composting practiced was a windrow system without aeration equipment and turning was practiced periodically. The water content of substrate mixed with cow manure, rice husk, and sawdust was about 60%. The temperature during the composting process was increased at over $60^{\circ}C$ within 3 days after composting starting. Increase of temperature at the early stage of composting was fasten in BLP and BL than Control. Because the pH of the raw material was high, the changes of pH during composting was little and stabilized in weak alkaline condition. EC value was high for accumulation of manure and urine excreted continuously by animal and the changes of those during composting occurred in 5~10% increase. Reduction rates of C/N ratio were the largest as the 22.7% in BLP and 19.2and 17.5% in BL and Control respectively. In the evaluation of phytotoxicity, there was stabilized within the short time in BLP and not the difference between BL and Control. Treatment of animal manure produced from small scale cattle shed was possible by using the small scale static pile composting system with reasonable water content and turning and the addition of microorganism in composting substrate was effected on the temperature increase at the early stage of composting and reduction of plant toxicity compounds but little on the maturity of compost.

  • PDF

The Photoautotrophic Culture System Promotes Photosynthesis and Growth of Somatic Embryo-derived Plantlets of Kalopanax septemlobus (독립영양방식 액체대량배양 시스템하에서 배양한 체세포배 유래 음나무 기내묘의 생장과 광합성)

  • Park, So-Young;Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.212-217
    • /
    • 2011
  • A photoautotrophic micropropagation methodology in liquid culture medium has a number of advantages for large-scale propagation of plants. This paper describes an improved system for the mass propagation via somatic embryogenesis of the medicinal plant Kalopanax septemlobus Nakai. Somatic embryo-derived young plantlets of K. septemlobus were cultured either under heterotrophic conditions with sucrose on half-strength MS medium with $30gL^{-1}$ sucrose, under heterotrophic conditions without sucrose, or under photoautotrophic conditions (MS liquid medium without sucrose under forced aeration) for four weeks before transferring the plantlets for acclimatization. Plantlets grown under photoautotrophic conditions had more leaves, higher chlorophyll content, a higher net photosynthetic rate (NPR), and a higher survival rate. The results indicate that the photoautotrophic conditions with a forced ventilation system are effective in enhancing the growth of plantlets and the rate of net photosynthesis. The plantlets grown under photoautotrophic conditions had a high survival rate (92%) upon ex vitro transplantation. Our study shows that autotrophically produced plantlets acclimatize better and sooner upon ex vitro transplantation than conventionally cultured plants.

Oxygen Transfer System in Biological Fluidised Bed Using the Deep Shaft as Aeration Device (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 폐수처리(廢水處理)에 있어서의 심층(深層) 폭기장치(曝氣裝置)에 의한 산소전달(酸素傳達) 시스템)

  • Kim, Hwan Gi;Ahn, Song Yeob;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • This paper is concentrated on the development of oxygen transfer system by U-tube deep shaft in biological fluidised bed process. The depth of the shaft is 32 m, it is composed of downcomer and riser. Not only flow pattern and oxygen transfer in the deep shaft but also oxygen limitation in biofilm and oxygen utilization in biological fluidised bed are investigated. In this investigation, driving force for liquid circulation in the deep shaft is affected by air injection depth and gas hold-up in downcomer. Flow pattern of the deep shaft is revealed to plug flow. When flow velocity in the deep shaft is maintained to 0.52 m/sec, $K_La$ value is peak at 25~30 m depth in riser. The efficiency of dissolved oxygen supply which passed from the deep shaft to biological fluidised bed is estimated to 56~81 % in the organic wastewater treatment using the deep shaft and when dissolved oxygen concentration is 9.2 mg/l and over, limiting factors of flux and substrate within biofilm are organic materials. Terefore, organic loadings could be increase without decreasing of BOD removal efficiency.

  • PDF

The Development of Treatment System for Removing the Low Concentrated Nitrogen and Phosphorus Using Phototrophic Bacteria and Media (광합성 박테리아 및 담체를 이용한 하천의 저농도 질소, 인 처리 시스템 개발)

  • Kim, Sun-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • We used phototrophic bacteria to remove low concentrated organic materials (CODCr), nitrogen and phosphorus. We applied $COD_{Cr}$ 37.3 mg/L, $NH_3-N$ 4.0 mg/L, and $PO_4^{3-}-P$ 1.0 mg/L (C:N:P=100:10:1) in the batch test, and the removal efficiencies were shown as follow: $COD_{Cr}$ 87.4%, $NH_3-N$ 46.3%, $PO_4^{3-}-P$ 79.7%. The aerobic process with mixed phototrophic bacteria, ceramic media, and media KSP01 showed the removal efficiencies of $COD_{Cr}$, $NH_3-N$, and $PO_4^{3-}-P$, each as 72.7% and 79.2%, respectively in the lab-scale reactor. The maximum $PO_4^{3-}-P$ removal efficiency reached 92.6% by adjusting pH. There were three conditions used to remove $NH_3-N$. The highest removal efficiency was 98.5% with 10.2 L/min of aeration in 1-2 reactors, and the result of applying river-water showed the high removal efficiency of $NH_3-N$ (82.8%). Therefore, this purification system may be useful to control nitrogen and phosphorus at low concentration in field.

The Practical Study for the Treatment of Fish Processing Saline Wastewater Using Immersed MBR (iMBR 공정을 이용한 수산물가공폐수 처리에 관한 실증적 고찰)

  • Park, Seung Kyun;Lee, Dong Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.469-475
    • /
    • 2016
  • The study is the result of an practical operation analysis for the full scale fishery product wastewater treatment plant with immersed MBR (iMBR) process. Since fishery product industries show a wide range of wastewater generation by the season, design and operation of the equalization basin are very important factor. The aeration system for the equalization basin mixing can save the chemical consumption for followed system through the restriction of acid fermentation. The concentrations of wastewater primary DAF process treated were BOD 2,291 mg/L, $COD_{Mn}$ 530 mg/L, SS 256.8 mg/L, T-N 38 mg/L, T-P 13.5 mg/L respectively. It was considered that iMBR is the most efficient biological process for high salinity content wastewater since It is irrelevant to the capability of the sludge precipitation. SADp and SADm were 0.31, $26.5m^3/hr{\cdot}m^3$ respectively. In iMBR process, the critical F/M ratio was derived at 0.08~0.10 gBOD/gMLSS by analysing the correlations between MLSS, normalized TMP and temperature. The effluent concentrations were BOD 1.8 mg/L, $COD_{Mn}$ 12.4 mg/L, SS 1.0 mg/L, T-N 7.85 mg/L, T-P 0.1 mg/L and removal efficiencies were 99.9%, 97.6%, 96.3%, 95.7%, 97.8% respectively.