• Title/Summary/Keyword: Aeration Process

Search Result 348, Processing Time 0.026 seconds

A Study on the improvement of treatment efficiency in a conventional sewage treatment plant (기존 하수처리장에서의 처리 효율개선에 관한 연구)

  • 안철우;박진식;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.50-56
    • /
    • 2000
  • In this study, sewage were treated with operating Two-step Aeration System and conventional activated sludge process together in a condition. At the same HRT 8hr of Two-step Aeration System and Activated Sludge Process, BOD treatment efficiency of 1st sedimentation basin effluent 36.9% by Two-step Aeration system was 12.3% higher than 24.65 by Activated Sludge Process and the COD treatment efficiency 39.8% by two-step Aeration System was 11.6.3% higher than 28.2% by Activated Sludge Process. BOD and COD treatment efficiencies of 2nd sedimentation basin effluent were 88.1% and 85.6% Two-step Aeration System and were 83.8% and 82.3% Activated Sludge Process. In the first treatment, as BOD was relatively removed a lot, F/M ratio 0.17, $0.21{\cdot}BOD/kg{\cdot}MLSS.d$ was maintained by Activated Sludge Process. Therefore it was proved that organic matter treatment efficiency by Two-step Aeration System os Higher than by Activated Sludge Process in a aeration time 8hr. $NH_4^{+}-N$ treatment efficiencies were 55.5% by Two-step Aeration System and 39.75 by Activated sludge Process. $NO_3^{-}-N$ concentration in 2nd. sedimentation basin effluent were 3.33% by Two-step Aeration System and 2.36% by Activated Sludge Process. From this result, Two-step Aeration System was proved more advantageous treatment process for nitrification than Activated Sludge Process. The fluctuation range of BOD, COD and SS concentration in 2nd sedimentation basin effluent $16~33mg/{\ell}$, $15~23mg/{\ell}$ and $14~22mg/{\ell}$ by Two-step Aeration System was smaller than $16~57mg/{\ell}$, $15~25mg/{\ell}$ by Activated sludge Process. Overall the fluctuation range in 2nd sediment basin effluent by was smaller than by Activated Sludge Process. As a result, it is possible for this Two-step Aeration with no facility investment and a little of operation condition change in a conventional sewage treatment plant to get stability and nitrification of treatment water quality.

  • PDF

Effect of aeration process on changes of prosapogenin content and antioxidant activity of red ginseng powder extract (Aeration 공정 처리가 홍삼분말 추출물의 프로사포게닌의 함량 변화와 항산화 활성에 미치는 영향)

  • Ryu, Hee-Jeong;Jung, Chul-Jong;Seo, Jeong-Gyun;Li, Xian;Yu, Yeong-Eun;Beik, Gyung-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.576-583
    • /
    • 2019
  • The effect of aeration process in causing changes in the prosapogenin content and the antioxidant activity of red ginseng powder extracts was investigated. With respect to the color change of the extracts, the L-value and b-value decreased significantly with the lapse of extraction time both with and without the aeration process. The a-value increased with the lapse of the extraction time in the non-aeration process but decreased in the aeration process. This result suggests that when the aeration process was performed, the lightness, yellowness, and redness decreased with the lapse of the extraction time, resulting in a darker color. The total polyphenolic and total flavonoid contents were the highest at 0.84 and 0.96 mg Gallic Acid Equivalent (GAE)/mL, 21.77 and 21.93 mg GAE/mL at 24 h and 36 h, respectively for the aerated red ginseng powder extracts. The DPPH, ABTS, H2O2 scavenging activity, and reducing power were measured to confirm the antioxidant effects of red ginseng powder extracts after the aeration process. Thus, the antioxidant activity was increased in the aerated red ginseng powder extracts. In addition, when comparing the contents of Rb1, Rg1, and Rg3, the content of Rg3 was significantly different, and it was confirmed that a large amount was produced in the aerated red ginseng extracts. These results indicate that the red ginseng extracts subjected to the aeration process are superior than the ones processed by the non-aeration process.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

A Study on the Aeration Mechanism in the Engine Lubrication System (엔진 윤활 시스템에 있어서 Aeration 발생 Mechanism연구)

  • 윤정의;전문수
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.447-452
    • /
    • 2001
  • In development process of engine lubrication system, many failure cases are related with aeration problem. Therefore, it is very important to clarify the aeration in the engine oil circuit system. As of today, many factors have been introduced as the major cause in the engine oil aeration. However, still many test data related with those are required to clearly understand it. In this paper the aeration measurement system and calculation method are introduced. And also using this system we measured engine oil aeration for various cases. From these results some conclusions are reduced.

A Study on the Aeration Mechanism in the Engine Lubrication System (엔진 윤활 시스템에 있어서 Aeration 발생 Mechanism연구)

  • 윤정의;김봉조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.171-176
    • /
    • 2000
  • In development process of engine lubrication system, many failure cases are related with aeration problem. Therefore, it is very important to clarify the aeration in the engine oil circuit system. As of today, many factors have been introduced as the major cause in the engine oil aeration. However, still many test data related with those are required to clearly understand it. In this paper the aeration measurement system and calculation method are introduced. And also using this system we measured engine oil aeration fur various cases. From these results some conclusions are reduced.

  • PDF

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi;Wi, Jun;Park, Jin-Kyu;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process (멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가)

  • Seo, In-Seok;Kim, Yeon-Kwon;Kim, Ji-Yeon;Kim, Hong-Suck;Kim, Byung-Goon;Choi, Chang-Gyu;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

PRELIMINARY STUDY ON COMPOSTING OF THE CATTLE MANURE AND RICE HULLS MIXTURES BY NEGATIVE AERATION

  • Park, K. J.;J. H. Hong;Park, M. H.;Park, W. C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.777-783
    • /
    • 2000
  • Composting by negative aeration is a reasonable proposition to control odor generated during composting process. Cattle manure and rice hulls mixtures were composted in a bin composting system by negative aeration. Continuous(CA) and intermittent(IA) aeration methods were applied to analyze the composting characteristics. The composting temperature and the ammonia emission during composting were investigated according to the aeration methods. The main problem for the negative aeration was the generation of condensate in the suction line of blower. The quantity of condensate was significant for continuous aeration. The aeration method should be modified to escape from the cooling effect of continuous aeration at the initial stage of composting. It took a longer time to finish a composting for intermittent aeration on account of lower aeration. It was concluded that the composting by negative aeration could be accomplished by either continuous or intermittent aeration method if the flow rate would be controlled more efficiently and the water vapor in suction line of blower could be removed effectively. Ammonia emission increased up to maximum value of 675ppm for continuous aeration while 300ppm for intermittent aeration. However, the cumulative value of ammonia emission was larger for intermittent aeration than for continuous aeration.

  • PDF

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.