• 제목/요약/키워드: Adversarial Patch

검색결과 7건 처리시간 0.022초

객체탐지 모델에 대한 위장형 적대적 패치 공격 (Camouflaged Adversarial Patch Attack on Object Detector)

  • 김정훈;양훈민;오세윤
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

완전 무인 매장의 AI 보안 취약점: 객체 검출 모델에 대한 Adversarial Patch 공격 및 Data Augmentation의 방어 효과성 분석 (AI Security Vulnerabilities in Fully Unmanned Stores: Adversarial Patch Attacks on Object Detection Model & Analysis of the Defense Effectiveness of Data Augmentation)

  • 이원호;나현식;박소희;최대선
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.245-261
    • /
    • 2024
  • 코로나19 팬데믹으로 인해 비대면 거래가 보편화되면서, 완전 무인 매장의 증가 추세가 두드러지고 있다. 이러한 매장에서는 모든 운영 과정이 자동화되어 있으며, 주로 인공지능 기술이 적용된다. 그러나 이러한 인공지능기술에는 여러 보안 취약점이 존재하고, 이러한 취약점들은 완전 무인 매장 환경에서 치명적으로 작용할 수 있다. 본 논문은 인공지능 기반의 완전 무인 매장이 직면할 수 있는 보안 취약점을 분석하고, 특히 객체 검출 모델인 YOLO에 초점을 맞추어, 적대적 패치를 활용한 Hiding Attack과 Altering Attack이 가능함을 보인다. 이러한 공격으로 인해, 적대적 패치를 부착한 객체는 검출 모델에 의해 인식되지 않거나 다른 객체로 잘못 인식될 수 있다는 것을 확인한다. 또한, 보안 위협을 완화하기 위해 Data Augmentation 기법이 적대적 패치 공격에 어떠한 방어 효과를 주는지 분석한다. 우리는 이러한 결과를 토대로 완전 무인 매장에서 사용되는 인공지능 기술에 내재된 보안 위협에 대응하기 위한 적극적인 방어 연구의 필요성을 강조한다.

GAN 기반 은닉 적대적 패치 생성 기법에 관한 연구

  • 김용수;강효은;김호원
    • 정보보호학회지
    • /
    • 제30권5호
    • /
    • pp.71-77
    • /
    • 2020
  • 딥러닝 기술은 이미지 분류 문제에 뛰어난 성능을 보여주지만, 공격자가 입력 데이터를 조작하여 의도적으로 오작동을 일으키는 적대적 공격(adversarial attack)에 취약하다. 최근 이미지에 직접 스티커를 부착하는 형태로 딥러닝 모델의 오작동을 일으키는 적대적 패치(adversarial patch)에 관한 연구가 활발히 진행되고 있다. 하지만 기존의 적대적 패치는 대부분 눈에 잘 띄기 때문에 실제 공격을 받은 상황에서 쉽게 식별하여 대응할 수 있다는 단점이 있다. 본 연구에서는 GAN(Generative Adversarial Networks)을 이용하여 식별하기 어려운 적대적 패치를 생성하는 기법을 제안한다. 실험을 통해 제안하는 방법으로 생성한 적대적 패치를 이미지에 부착하여 기존 이미지와의 구조적 유사도를 확인하고 이미지 분류모델에 대한 공격 성능을 분석한다.

GAN-based shadow removal using context information

  • Yoon, Hee-jin;Kim, Kang-jik;Chun, Jun-chul
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.29-36
    • /
    • 2019
  • When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.

학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향 (The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation)

  • 원태연;조수민;어양담
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.177-185
    • /
    • 2022
  • 본 연구에서는 딥러닝을 통해 고해상도 광학 위성영상에 동종센서로 촬영한 영상을 참조하여 폐색 영역을 복원하는 방법을 제안하였다. 패치 단위로 분할된 영상에서 원본 영상의 화소 분포를 최대한 유지하며 폐색 영역을 모의한 영상과 주변 영상의 자연스러운 연속성을 위해 ConvNeXt 블록을 적용한 CycleGAN (Cycle Generative Adversarial Network) 방법을 사용하여 실험을 진행하였고 이를 3개의 실험지역에 대해 분석하였다. 또한, 학습패치 크기를 512*512화소로 하는 경우와 2배 확장한 1024*1024화소 크기의 적용 결과도 비교하였다. 서로 특징이 다른 3개의 지역에 대하여 실험한 결과, ConvNeXt CycleGAN 방법론이 기존의 CycleGAN을 적용한 영상, Histogram matching 영상과 비교하여 개선된 R2 값을 보여줌을 확인하였다. 학습에 사용되는 패치 크기별 실험의 경우 1024*1024화소의 패치를 사용한 결과, 약 0.98의 R2값이 산출되었으며 영상밴드별 화소 분포를 비교한 결과에서도 큰 패치 크기로 학습한 모의 결과가 원본 영상과 더 유사한 히스토그램 분포를 나타내었다. 이를 통해, 기존의 CycleGAN을 적용한 영상 및 Histogram matching 영상보다 발전된 ConvNeXt CycleGAN을 사용할 때 원본영상과 유사한 모의 결과를 도출할 수 있었고, 성공적인 모의를 수행할 수 있음을 확인하였다.

RAPGAN와 RRDB를 이용한 Image-to-Image Translation의 성능 개선 (Performance Improvement of Image-to-Image Translation with RAPGAN and RRDB)

  • 윤동식;곽노윤
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.131-138
    • /
    • 2023
  • 본 논문은 RAPGAN(Relativistic Average Patch GAN)과 RRDB(Residual in Residual Dense Block)을 이용한 Image-to-Image 변환의 성능 개선에 관한 것이다. 본 논문은 Image-to-Image 변환의 일종인 기존의 pix2pix의 결점을 보완하기 위해 세 가지 측면의 기술적 개선을 통한 성능 향상을 도모함에 그 목적이 있다. 첫째, 기존의 pix2pix 생성자와 달리 입력 이미지를 인코딩하는 부분에서 RRDB를 이용함으로써 더욱 더 깊은 학습을 가능하게 한다. 둘째, RAPGAN 기반의 손실함수를 사용해 원본 이미지가 생성된 이미지에 비해 얼마나 진짜 같은지를 예측하기 때문에 이 두 이미지가 모두 적대적 생성 학습에 영향을 미치게 된다. 마지막으로, 생성자를 사전학습시켜 판별자가 조기에 학습되는 것을 억제하도록 조치한다. 제안된 방법에 따르면, FID 측면에서 기존의 pix2pix보다 평균 13% 이상의 우수한 이미지를 생성할 수 있었다.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.