• Title/Summary/Keyword: Adversarial Patch

Search Result 7, Processing Time 0.02 seconds

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

AI Security Vulnerabilities in Fully Unmanned Stores: Adversarial Patch Attacks on Object Detection Model & Analysis of the Defense Effectiveness of Data Augmentation (완전 무인 매장의 AI 보안 취약점: 객체 검출 모델에 대한 Adversarial Patch 공격 및 Data Augmentation의 방어 효과성 분석)

  • Won-ho Lee;Hyun-sik Na;So-hee Park;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.245-261
    • /
    • 2024
  • The COVID-19 pandemic has led to the widespread adoption of contactless transactions, resulting in a noticeable increase in the trend towards fully unmanned stores. In such stores, all operational processes are automated, primarily using artificial intelligence (AI) technology. However, this AI technology has several security vulnerabilities, which can be critical in the environment of fully unmanned stores. This paper analyzes the security vulnerabilities that AI-based fully unmanned stores may face, focusing particularly on the object detection model YOLO, demonstrating that Hiding Attacks and Altering Attacks using adversarial patches are possible. It is confirmed that objects with adversarial patches attached may not be recognized by the detection model or may be incorrectly recognized as other objects. Furthermore, the paper analyzes how Data Augmentation techniques can mitigate security threats by providing a defensive effect against adversarial patch attacks. Based on these results, we emphasize the need for proactive research into defensive measures to address the inherent security threats in AI technology used in fully unmanned stores.

GAN 기반 은닉 적대적 패치 생성 기법에 관한 연구

  • Kim, Yongsu;Kang, Hyoeun;Kim, Howon
    • Review of KIISC
    • /
    • v.30 no.5
    • /
    • pp.71-77
    • /
    • 2020
  • 딥러닝 기술은 이미지 분류 문제에 뛰어난 성능을 보여주지만, 공격자가 입력 데이터를 조작하여 의도적으로 오작동을 일으키는 적대적 공격(adversarial attack)에 취약하다. 최근 이미지에 직접 스티커를 부착하는 형태로 딥러닝 모델의 오작동을 일으키는 적대적 패치(adversarial patch)에 관한 연구가 활발히 진행되고 있다. 하지만 기존의 적대적 패치는 대부분 눈에 잘 띄기 때문에 실제 공격을 받은 상황에서 쉽게 식별하여 대응할 수 있다는 단점이 있다. 본 연구에서는 GAN(Generative Adversarial Networks)을 이용하여 식별하기 어려운 적대적 패치를 생성하는 기법을 제안한다. 실험을 통해 제안하는 방법으로 생성한 적대적 패치를 이미지에 부착하여 기존 이미지와의 구조적 유사도를 확인하고 이미지 분류모델에 대한 공격 성능을 분석한다.

GAN-based shadow removal using context information

  • Yoon, Hee-jin;Kim, Kang-jik;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2019
  • When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

Performance Improvement of Image-to-Image Translation with RAPGAN and RRDB (RAPGAN와 RRDB를 이용한 Image-to-Image Translation의 성능 개선)

  • Dongsik Yoon;Noyoon Kwak
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.131-138
    • /
    • 2023
  • This paper is related to performance improvement of Image-to-Image translation using Relativistic Average Patch GAN and Residual in Residual Dense Block. The purpose of this paper is to improve performance through technical improvements in three aspects to compensate for the shortcomings of the previous pix2pix, a type of Image-to-Image translation. First, unlike the previous pix2pix constructor, it enables deeper learning by using Residual in Residual Block in the part of encoding the input image. Second, since we use a loss function based on Relativistic Average Patch GAN to predict how real the original image is compared to the generated image, both of these images affect adversarial generative learning. Finally, the generator is pre-trained to prevent the discriminator from being learned prematurely. According to the proposed method, it was possible to generate images superior to the previous pix2pix by more than 13% on average at the aspect of FID.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.