• Title/Summary/Keyword: Advanced vehicle control systems

Search Result 144, Processing Time 0.02 seconds

A Study on the Braking Force Distribution of ADAS Vehicle (첨단 운전자 보조시스템 장착 차량의 브레이크 제동력 분배에 관한 연구)

  • Yoon, Pil-Hwan;Lee, Seon Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.550-560
    • /
    • 2018
  • Many countries have provided support for research and development and implemented policies for Advanced Driver Assistance Systems (ADAS) for enhancing the safety of vehicles. With such efforts, the toll of casualties due to traffic accidents has decreased gradually. Korea has exhibited the lowest toll of casualties due to traffic accidents and is ranked 32nd in mortality among the 35 OECD members. Traffic accidents typically fall into three categories depending on the cause of the accident: vehicle to vehicle (V2V), vehicle to pedestrian (V2P), and vehicle independent. Most accidents are caused by drivers' mistakes in recognition, judgment, or operation. ADAS has been proposed to prevent and reduce accidents from such human errors. Moreover, the global automobile industry has recently been developing various safety measures, but on-road tests are still limited and contain various risks. Therefore, this study investigated the international standards for evaluation tests with regard to the assessment techniques in braking capability to cope with the limitations of on-road tests. A theoretical formula for braking force and a control algorithm are proposed, which were validated by comparing the results with those from an on-road test. These results verified the braking force depending on the functions of ADAS. The risks of on-road tests can be reduced because the proposed theoretical formula allows a prediction of the tendencies.

Advanced Kalman filter - a survey (칼만필터의 최근 동향 및 발전)

  • 이장규;이연석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.464-469
    • /
    • 1987
  • The Kalman filter is an optimal linear estimator that has been an active research topic for the past three decades. The scheme has become the milestone of modern filtering, and it is applied to many areas including navigations and controls of free vehicle. The Kalman filter technique is matured. But some problems are still remained to be resolved. The prevention of divergence induced by digital implementation, nonoptimal application for nonlinear system, and application to non-Gaussian processes are some of the problems. This paper surveys the problems. The square root filtering is suggested to prevent the divergence. The extended Kalman filter is used for nonlinear systems. And, many other approaches to Kalman-like optimal estimators are also investigated.

  • PDF

Vehicle Longitudinal Velocity Estimation on Inclined Road (경사진 노면에서의 차량의 종 속도 추정)

  • Lee, Sang-Yeob;Kim, In-Keun;Lee, Dong-Hun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Advanced Lane Change Assist System for Automatic Vehicle Control in Merging Sections : An algorithm for Optimal Lane Change Start Point Positioning (고속도로 합류구간 첨단 차로변경 보조 시스템 개발 : 최적 차로변경 시작 지점 Positioning 알고리즘)

  • Kim, Jinsoo;Jeong, Jin-han;You, Sung-Hyun;Park, Janhg-Hyon;Young, Jhang-Kyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.9-23
    • /
    • 2015
  • A lane change maneuver which has a high driver cognitive workload and skills sometimes leads to severe traffic accidents. In this study, the Advanced Lane Change Assist System (ALCAS) was developed to assist with the automatic lane changes in merging sections which is mainly based on an automatic control algorithm for detecting an available gap, determining the Optimal Lane Change Start Point (OLCSP) in various traffic conditions, and positioning the merging vehicle at the OLCSP safely by longitudinal automatic controlling. The analysis of lane change behavior and modeling of fundamental lane change feature were performed for determining the default parameters and the boundary conditions of the algorithm. The algorithm was composed of six steps with closed-loop. In order to confirm the algorithm performance, numerical scenario tests were performed in various surrounding vehicles conditions. Moreover, feasibility of the developed system was verified in microscopic traffic simulation(VISSIM 5.3 version). The results showed that merging vehicles using the system had a tendency to find the OLCSP readily and precisely, so improved merging performance was observed when the system was applied. The system is also effective even during increases in vehicle volume of the mainline.

Advanced Channel Estimation Schemes Using CDP based Updated Matrix for IEEE802.11p/WAVE Systems

  • Park, Choeun;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Today, cars have developed into intelligent automobiles that combine advanced control equipment and IT technology to provide driving assistance and convenience to users. These vehicles provide infotainment services to the driver, but this does not improve the safety of the driver. Accordingly, V2X communication, which forms a network between a vehicle and a vehicle, between a vehicle and an infrastructure, or between a vehicle and a human, is drawing attention. Therefore, various techniques for improving channel estimation performance without changing the IEEE 802.11p standard have been proposed, but they do not satisfy the packet error rate (PER) performance required by the C-ITS service. In this paper, we analyze existing channel estimation techniques and propose a new channel estimation scheme that achieves better performance than existing techniques. It does this by applying the updated matrix for the data pilot symbol to the construct data pilot (CDP) channel estimation scheme and by further performing the interpolation process in the frequency domain. Finally, through simulations based on the IEEE 802.11p standard, we confirmed the performance of the existing channel estimation schemes and the proposed channel estimation scheme by coded PER.

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.

A Study on DGPS/GIS-based Vehicle Control for Safe Driving (안전주행을 위한 DGPS/GIS 기반의 차량제어 연구)

  • Lee, Kwanghee;Bak, Jeong-Hyeon;Lee, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • In recent days, vehicles have become equipped with electric systems that assist and help drivers driving safe by reducing possible accidents. LDWS(Lane Departure Warning System) and LKAS(Lane Keeping Assistant System) are involved in assist systems, especially for lateral motion of vehicles. Sudden and inattentive lateral motion of vehicles due to drivers' fatigue, illness, inattention, and drowsiness are major causes of accidents in highway. LDWS and LKAS provide drivers with warnings or assisting power to reduce any possibilities of accidents. In order to prevent or minimize the possibilities of accidents, lateral motion control of vehicles has been introduced in this research. DGPS/RTK(Differential Global Positioning System/Real Time Kinematics) and GIS(Geographic Information System) have been used to obtain the current position of vehicles and decide when activate controlling lateral motion of vehicles. The presented lateral motion control has been validated with actual vehicle tests.

Passive Transient Voltage Suppression Devices for 42-Volt Automotive Electrical Systems

  • Shen, Z.John
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.171-180
    • /
    • 2002
  • New 42-volt automotive electrical systems can provide significant improvements in vehicle performance and fuel economy. It is crucial to provide protection against load dump and other overvoltage transients in 42-volt systems. While advanced active control techniques are generally considered capable of providing such protection, the use of passive transient voltage suppression (TVS) devices as a secondary or supplementary protection means can significantly improve design flexibility and reduce system costs. This paper examines the needs and options for passive TVS devices for 42-volt applications. The limitations of the commonly available automotive TVS devices, such as Zener diodes and metal oxide varistors (MOV), are analyzed and reviewed. A new TVS device concept, based on power MOSFET and thin-film polycrystalline silicon back-to-back diode technology, is proposed to provide a better control on the clamp voltage and meet the new 42-volt specification. Both experimental and modeling results are presented. Issues related to the temperature dependence and energy absorbing capability of the new TVS device are discussed in detail. It is concluded that the proposed TVS device provides a cost-effective solution for load dump protection in 42-volt systems.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.