• 제목/요약/키워드: Advanced power system

검색결과 2,190건 처리시간 0.028초

42V 차량용 에너지 관리장치를 위한 양방향 DC/DC 컨버터의 개발 (Development of Bi-directional DC/DC Converter for the 42V Vehicle Energy management System)

  • 김인주;이성세;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.446-450
    • /
    • 2004
  • The amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net. Furthermore, the necessity for development of energy storage device is highlighted recently. Bidirectional nm Converter is one of the important parts in 42V power system. Therefore, this paper proposes bidirectional Cascade Buck-Boost DC/DC Converter which can satisfies required specifications in 42V power system The operation principle is described along with simple control method, and experimental results on a 500W prototype are provided.

  • PDF

감도 해석을 통한 전압안정도 예방제어 알고리듬 개발 (Preventive Control Algorithm Using Sensitivity Analysis in Voltage Stability Assessment.)

  • 한상욱;서상수;이병준;장경철;김태균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.483-485
    • /
    • 2005
  • In 2003, there was a wide-area blackout in the United States and Canada. More than fifty million people underwent power failure and the estimated financial loss was about four billion dollars. By such wide-area blackouts, the interest in voltage stability has increased gradually. In order to maintain the voltage stability, the preventive control is essential for a contingency. In this paper, a proper preventive control is determined for defined severe contingencies. Among the preventive control methods (generation rescheduling, load curtailment, tap adjusting, injecting the shunt capacitor, and so on.), this paper presents the injection of shunt capacitors by the sensitivity analysis of the voltage stability assessment for preventive controls. The 2006-2010 KEPCO summer peak system is used in case studies.

  • PDF

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

화력 발전소 보일러 제어 시스템의 구성에 관한 연구 (Configuration of a Boiler Control System in Thermal Power Plant)

  • 변승현;박두용;김병철;신만수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.168-168
    • /
    • 2000
  • In this paper, a boiler control system for thermal power plant is configured. The boiler control system for thermal power plant is largely composed of an ABC(Automatic Boiler Control) system and a MBC(Mill Burner Control) system. ABC system controls analog process values, so almost all analog control logic is dealt with in ABC system. On the other hand, MBC system relates to sequence control logic such as MFT logic, Furnace Purge, Safety related logic. Advanced control systems made from advanced countries deal with an ABC system and MBC system in a distributed control system. In this paper, we adopt a DCS as an ABC system and adopt a PLC system as a MBC system to configure a boiler control system for thermal power plant using domestic control system. Finally the validity of the configured boiler control system is shown via simulation using digital simulator for boiler system in thermal power plant.

  • PDF

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

  • Yuan, Yue;Coble, Jamie
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.905-913
    • /
    • 2017
  • Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional-integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi-Sugeno (T-S) fuzzy logic-based power distribution system. Two T-S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T-S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.

1,500MW대형원전 정지/저출력 안전성향상을 위한 설계개선안 및 민감도 분석 (Risk and Sensitivity Analysis during the Low Power and Shutdown Operation of the 1,500MW Advanced Power Reactor)

  • 문호림;한덕성;김재갑;이상원;임학규
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.33-39
    • /
    • 2019
  • An 1,500MW advanced power reactor required the standard design approval by a Korean regulatory body in 2014. The reactor has been designed to have a 4-train independent safety concept and a passive auxiliary feedwater system (PAFS). The full power risk or core damage frequency (CDF) of 1,500MW advanced power reactor has been reduced more than that of APR1400. However, the risk during the low power and shutdown (LPSD) operation should be reduced because CDF of LPSD is about 4.7 times higher than that of internal full power. The purpose of paper is to analysis design alternatives to reduce risk during the LPSD. This paper suggests design alternatives to reduce risk and presents sensitivity analysis results.

전압안정도 여유 향상을 위한 무효예비력 기반 상정사고 제약 최적조류계산 (Reactive Reserve Based Contingency Constrained Optimal Power Flow for Enhancement of Voltage Stability Margins)

  • 송화창;이병준;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.19-23
    • /
    • 2003
  • This paper presents a new concept of reactive reserve based contingency constrained optimal power flow (RCCOPF) for voltage stability enhancement. This concept is based on the fact that increase in reactive reserves is effective for enhancement of voltage stability margins of post-contingent states, in this paper, the proposed algorithm is applied to voltage stability margin of interface flow. Interface flow limit, in the open access environment, can be a main drawback. RCCOPF for enhancement of interface flow margin is composed of two modules, modified continuation power flow (MCPF) and optimal power flow (OPF). These modules art recursively perform ed until satisfying the required margin of interface flow in the given voltage stability criteria.

  • PDF