• Title/Summary/Keyword: Advanced Wastewater Treatment Process

Search Result 237, Processing Time 0.023 seconds

Advanced Wastewater Treatment using Sludge Solubilization by the Cavitation and PGA addition (Cavitation에 의한 슬러지 가용화와 PGA를 이용한 하수고도처리에 관한 연구)

  • KIM, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.449-454
    • /
    • 2008
  • Some pretreatment methods have been proposed to enhance the biodegradability and to shorten the hydrolysis reaction time. By means of efficient pretreatment the suspended solids (SS) can be made of better accessible for the anaerobic bacteria. There are several ways how this can be accomplished, which include biological, mechanical, thermal, and chemical methods. For the sludge solubilization using the cavitation phenomenon, we have tried to develop a pretreatment process consisted of a reactor and pumps. The objectives of this study were to develop a advanced wastewater treatment consisted of IABR and the cavitation with PGA. The most effective removal for organic matter and nutrients were occured when both cavitation pretreatment and ${\gamma}$-PGA were applied at the IABR process. Only small portion of ${\gamma}$-PGA at a rate of 1.38mg/L, was enough to improve sedimentation ability, SS removal efficiencies, and sludge volume reduction. After the sludge solubilization by the cavitation, SCOD increased to 193% and SS decreased to 36%. The removal ratio of BOD was 94.5%, T-N removal ratio was 85.5% and T-P removal ratio was 84.9%. The combination process of the IABR with the cavitation and PGA addition seems to be very effective alternative wastewater treatment process.

Determination of Optimal Livestock Wastewater Treatment Process for Linked Treatment in Sewage Treatment Plant (하수처리장 연계처리를 위한 가축분뇨 최적 처리공정 선정에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.52-59
    • /
    • 2012
  • As the result of reviewing the linked treatment of water quality for treating process at public livestock wastewater treatment facilities for fair selection of the proper linked process in case of linking sewage treatment plant for livestock wastewater, in case of wastewater processed by bio-reactor that is only biologically-treated, the load factor showed relatively high as 1.67%(base on design quality), 2.59%(base on operation quality) regarding COD and 3.69%(base on design quality), 7.67%(base on operation quality) regarding $COD_{Mn}$ but it is judged that there is nearly no influence on the operation of sewage treatment plan. And, in case of oxidized flotation-treated water & biofiltlation-treated water that are the advanced wastewater treatment, the load factor is approximately 1% and there is concern about the installation of excessive facilities in case of installing the advanced wastewater treatment. So, in case of considering the economic efficiency & stable operation of sewage treatment plant S, it is judged to be desirable to link with wastewater processed by bio-reactor that is biologically-treated.

Advanced Wastewater Treatment Using Anoxic-Aerobic Reactor Filled with Porous Media (다공성 미디어를 충진한 혐기-호기 반응조를 이용한 하수고도처리에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • A biological anoxic-aerobic reactor filled with porous media was operated in lab scale for the advanced wastewater treatment. The experiments were conducted for 6 months with three HRTs (4, 6, 8hr) and temperature of $23{\sim}25^{\circ}C$. Some other experimental conditions were as follows; nitrification reactor (MLSS 4,500mg/L, DO 3.3mg/L, $23{\sim}28^{\circ}C$), denitrification reactor(MLSS 8,000mg/L, ORP -100mV, Temp.$19{\sim}23^{\circ}C$). Average removal efficiencies of SS, $BOD_5$, $COD_{Cr}$, T-N, and T-P were 97.8%, 95.5%, 94.5%, 80.2%, and 60.6%, respectively. The reactor filled with porosity media showed stable removal capacity for organics and nutrients. Fast and complete nitrification and denitrification were accomplished. Maintaining high MLSS with porous media in the nitrification and denitrification reactor appears to enhance the nitrogen removal process. For the higher T-P removal, some coagulant addition process will be needed.

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Evaluation on the Possibility of a Retrofitting Treatment Using Moving Media of Existing Wastewater Treatment (유동상 Media를 이용한 기존하수처리장의 Retrofitting 가능성 평가)

  • Ko, Tae-Ho;Park, Woon-Ji;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, as MBBR(Moving Bed Biofilm Reactor) process using waste tire media is suggested for retrofitting with advanced wastewater treatment and the removal property of organic matter and nutrient and the capacity of media are evaluated through long-term operation with pilot plant following seasons, the application capacity of retrofitting with MBBR process to a existing wastewater treatment is studied. As a result of the long-term operation of the process, it is proved that there is no loss and abrasion of media, and also that it is possible to secure the sufficient attached bio-mass. The values of organic matter and nutrient in effluent are suitable for the strict discharged water quality standards in every season including winter.

  • PDF

A Study on the Advanced Treatment of Wastewater by Plants (식물을 이용한 오수의 고도처리에 관한 연구)

  • 이용두;김현희
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • In recent years increasing production and disposal of wastewater have caused an accelerated eutrophication of receiving waters. Therefore, in order to alleviate the detrimental impact of wastewater discharge, there is an increasing demand for removing the main nutrients, nitrogen and phosphorus, as well as the organic content of the waste water prior to disposal. This is effectively achieved by extended conventional treatment technology. However, the working expenses and energy requirements of such advanced treatment systems are rather high. So in a sparsely populated rural community is required development of wastewater treatment system combined with the regional characteristics. In this study, the systems are planted with Reeds and Amaryllis In A.C and estimated purification potential of system. The results obtained are as follows. BOD removal rate is 20% in the early stage, the last removal rate is 35% in A.C process and is 65% in Amaryllis+A.C process and is 50% in Reed+A.C process. T-N removal rate by Amaryllis is average 2.6g/$m^3$ㆍd, T-N removal rate by Reed is average 1.76g/$m^3$ㆍd. T-P removal rate by Amaryllis is average 0.27g/$m^3$ㆍd, T-P removal rate by Reed is average 0.25g/$m^3$ㆍd. BOD removal rate constant with retention time is 1.4494(1/d), T-N removal rate constant is 0.5428(1/d), T-P removal rate constant is 0.5287(1/d).

  • PDF

Comparison of Bacterial Numbers and Treatment Efficiencies in Bioreactors of Various Advanced Wastewater Treatment Processes (다양한 고도폐수처리공정에서의 생물반응조 세균수와 처리효율과의 비교)

  • Sung, Gi Moon;Cho, Yeon-Je;Kim, Sung Kyun;Park, Eun Won;Yu, Ki Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.329-334
    • /
    • 2009
  • Bacterial numbers, such as endospore-formers, and treatment efficiencies were investigated for Rotating Activated Bacillus Contactors (RABC) and other advanced wastewater treatment processes including anaerobic-anoxic-oxic (A2O), sequencing batch reactor (SBR) and biological aerated filter (BAF). Endospore-forming bacterial numbers in the RABC showed 129-fold higher levels than those of the existing advanced systems. RABC process demonstrated the highest bacterial numbers in its bioreactors (paired t-test, p<0.01). RBC biofilms and aeration tanks of the RABC system showed 131- and 476-fold higher than other existing advanced processes, respectively. Mean treatment efficiencies of the existing systems were 83.5% for chemical oxygen demand (COD), 59.1% for total nitrogen (TN) and 76.8% for total phosphorus (TP). However, RABC process removed 96.9% for COD, 96.9% for TN and 91.9% for TP for highly concentrated food wastewater (COD>1,500 mg/L, TN>150 mg/L, TP>50 mg/L). Treatment efficiency was significantly reduced when the numbers of Bacillus genus in the bioreactors decreased below $10^6CFU/mL$. The automated RABC (A-RABC), in which dissolved oxygen concentrations are automatically controlled, showed higher treatment efficiencies compared to the RABC process. The RABC system maintained sufficient bacterial numbers for the effective treatment of highly concentrated food wastewater. Moreover, final effluent was in agreement to water quality standards.

Advanced Wastewater Treatment Process using Rotating Activated Bacillus Contactor (RABC) (망상형 회전식 바실러스 접촉장치를 이용한 하수의 고도처리공정에 관한 연구)

  • Kim, Eung-Ho;Cho, Yoen-Je;Park, Seong-Joo;Shin, Kwang-Soo;Yim, Soo-Bin;Jung, Jin-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.190-195
    • /
    • 2004
  • A new technology for advanced wastewater treatment was developed using a modified Rotating Biological Contactor (RBC) process, named as Rotating Activated Bacillus Contactor (RABC) process that utilizes Bacillus sp., the facultatively anaerobic or activated microaerophilic bacteria on multiple-stage reticular rotating carriers, as a predominant species. The RABC process for a municipal wastewater with relatively low concentrations of organics, nitrogen, and phosphorus showed stable and high removal efficiencies, less than $BOD_5$ 10 mg/L, T-N 15 mg/L, and T-P 1.5 mg/L in final effluent. The performance load of RABC process was shown to be $1.23kg{\cdot}BOD/m^2{\cdot}day$ for the first stage (average $0.31kg{\cdot}BOD/m^2{\cdot}day$ for the total stages) based on both removed BOD and converted disc area corresponding to the reticular one. The sludge produced in the RABC process is characterized by low generation rate (about $0.18kg{\cdot}MLSS/kg{\cdot}BOD$) and excellent settleability. The number ratio of Bacillus ($2.4{\times}10^6CFU/ml$) to heterotrophic bacteria ($3.6{\times}10^7CFU/ml$) inhabiting in the biofilms of the RABC process was 6.7 %, indicating that Bacillus sp. was a predominant species in the biofilms. The RABC process with reticular rotating carriers showed its excellent performance for the advanced wastewater treatment without any offensive odor problem due to organic overloading.

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Trends of Technology Development through Investigation and Analysis of Domestic Patent Related to Wastewater Treatment Technology including Membrane, Sludge Treatment and Advanced Treatment Technology and Equipment (분리막 및 슬러지 처리와 고도처리 기술·장비를 포함한 하·폐수 처리기술의 특허 조사·분석을 통한 기술개발 동향)

  • Yoo, Ho Sik;Kim, Ji Tae
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.375-388
    • /
    • 2017
  • Wastewater treatment (WWT) technology has been developing from simple pollutant treatment to energy and resource-saving advanced technology, and various technologies combined with IT and BT are developed to minimize the amount of pollutant and toxic substance discharge to the public water areas and to improve operational efficiency. To examine the development trend of domestic wastewater treatment technology, the registered patent technologies were surveyed, classified and analyzed by year and sector. This paper considers the status of patent registration related to WWT from 2010.1 to 2017.5 in terms of the number of specific technical areas, and the trends are analyzed based on the 10 categorization field such as biological and physicochemical treatment process, equipment and device, material, sludge treatment, membrane, process control and 42 specific technical areas. A total of 3,356 patents have been registered since 2010, and the number of patents has been decreasing since the peak at 2013 and maintains 3~400 per year. The total number of patents has not yet been less than other countries, but the number of patents of more advanced technologies, which can lead the global market, such as process monitoring, new concept processing and equipment technologies is still insufficient compared to developed countries.