• Title/Summary/Keyword: Advanced Safety

Search Result 2,759, Processing Time 0.031 seconds

Screening and detection of methylisothiazolinone and chloromethylisothiazolinone in cosmetics by UPLC-MS/MS

  • Lee, Ji Hyun;Paek, Ji Hyun;Park, Han Na;Park, Seongsoo;Kang, Hoil
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.125-133
    • /
    • 2020
  • Methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) cause allergic contact dermatitis and are banned cosmetics ingredients, except in rinse-off products. However, their presence has been detected in cosmetics. We report a UPLC-tandem MS/MS screening method for their simultaneous determination in cosmetics. To facilitate extraction from various matrices, pretreatment methods were developed for each sample type. The method was optimized through a series of assessments, including specificity, LOD, LOQ, linearity, recovery, stability, precision, and accuracy. The LODs and LOQs for MIT ranged from 0.054 and 0.163 ㎍ mL-1 whereas those for CMIT ranged from 0.040 and 0.119 ㎍ mL-1. The linear correlation coefficients (r2) were higher than 0.999. Relative standard deviations (RSDs) for both intra- and inter-day measurements ranged from 0.3 ~ 13.6 %. Recoveries at three different concentrations were within 87.9 ~ 118.9 %. The RSD for stability measurements of spiked samples was within 7 %. These results confirm the suitability of the developed method for the simultaneous quantitation of MIT and CMIT in cosmetics. Samples of 320 color cosmetics, including eyeshadows, solid lipsticks, liquid lipsticks, and nail polishes were analyzed using the developed method, and two of them were found to contain both MIT and CMIT and one of them was found to contain only MIT. This data and the method will aid the regulation of ingredients used in cosmetics.

Feasibility Analysis for Introduction of Scaffolding with Advanced Guardrail System to Prevent Falls (비계작업의 추락재해예방을 위한 선행 안전난간 공법의 도입 타당성 분석)

  • Park, J.D.;Moon, S.O.;Lee, H.S.;Jeong, S.C.;Kwon, Y.J.;Jung, K.
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.23-31
    • /
    • 2020
  • In the construction sector, there were 99 fatalities from falls associated with steel tube and system scaffolds for three years from 2016 to 2018 and out of which 27.3 percent (27 workers) were found to have occurred during installing and dismantling procedure. To erect scaffolding which is installed for the work at height, the work platforms are generally installed first and the safety guardrails are installed and vice versa to dismantle. As a result, workers are exposed to the risk of falling because they erect and dismantle scaffolding without guardrails. To minimize the risk of falling, it is necessary to study a new construction method that can erect or dismantle scaffolding while guardrails are installed (called advanced guardrail system). This study analyzed advanced guardrail system in terms of safety regulation, workability and economic efficiency by investigating the domestic situation on the use of scaffolding, reviewing domestic and foreign standards for guardrails and conducting economic feasibility study. The results of this study is expected to greatly contribute to preventing falls in scaffolding installation and dismantlement procedure. As a follow-up study, empirical research is required including physical test of scaffolding with advanced guardrail system and effectiveness analysis after trial applications.

Measurement of safety rods reactivity worth by advanced source jerk method in HWZPR

  • Nasrazadani, Z.;Ahmadi, A.;Khorsandi, J.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.963-967
    • /
    • 2019
  • Accurate measurement of the reactivity worth of safety rods is very important for the safe reactor operation, in normal and emergency conditions. In this paper, the reactivity worth of safety rods in Heavy Water Zero Power Reactor (HWZPR) in the new lattice pitch is measured by advanced source jerk method. The average of the results related to two different detectors is equal to 29.88 mk. In order to verify the result, this parameter was compared to the previously measured value by subcritical to critical approach. Different experiment results are finally compared with corresponding calculated result. Difference between the average experimental and calculated results is equal to 2.2%.

A PRELIMINARY EVALUATION OF UNPROTECTED LOSS-OF-FLOW ACCIDENT FOR A PROTOTYPE FAST-BREEDER REACTOR

  • SUZUKI, TOHRU;TOBITA, YOSHIHARU;KAWADA, KENICHI;TAGAMI, HIROTAKA;SOGABE, JOJI;MATSUBA, KENICHI;ITO, KEI;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.240-252
    • /
    • 2015
  • In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of in-vessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.

ADVANCED MMIS TOWARD SUBSTANTIAL REDUCTION IN HUMAN ERRORS IN NPPS

  • Seong, Poong Hyun;Kang, Hyun Gook;Na, Man Gyun;Kim, Jong Hyun;Heo, Gyunyoung;Jung, Yoensub
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • This paper aims to give an overview of the methods to inherently prevent human errors and to effectively mitigate the consequences of such errors by securing defense-in-depth during plant management through the advanced man-machine interface system (MMIS). It is needless to stress the significance of human error reduction during an accident in nuclear power plants (NPPs). Unexpected shutdowns caused by human errors not only threaten nuclear safety but also make public acceptance of nuclear power extremely lower. We have to recognize there must be the possibility of human errors occurring since humans are not essentially perfect particularly under stressful conditions. However, we have the opportunity to improve such a situation through advanced information and communication technologies on the basis of lessons learned from our experiences. As important lessons, authors explained key issues associated with automation, man-machine interface, operator support systems, and procedures. Upon this investigation, we outlined the concept and technical factors to develop advanced automation, operation and maintenance support systems, and computer-based procedures using wired/wireless technology. It should be noted that the ultimate responsibility of nuclear safety obviously belongs to humans not to machines. Therefore, safety culture including education and training, which is a kind of organizational factor, should be emphasized as well. In regard to safety culture for human error reduction, several issues that we are facing these days were described. We expect the ideas of the advanced MMIS proposed in this paper to lead in the future direction of related researches and finally supplement the safety of NPPs.

Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario

  • Bin Du;Haoxiang Li;Wei Zheng;Xuedong He;Tao Ma;Huaqiang Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.71-79
    • /
    • 2023
  • Air ingress incidents are major safety accidents in very-high-temperature reactors (VHTRs). Air containing a high volume fraction of oxygen may cause severe oxidation of core components at the VHTR, especially for the significantly thin alloy tube wall in the intermediate heat exchanger (IHE). The research objects of this study are Inconel 617 and Incoloy 800H, two candidate alloys for IHE in VHTR. The air ingress accident scenario is simulated with high-temperature air flow at 950 ℃. A continuous oxide scale was formed on the surfaces of both the alloys after the experiment. Because the oxide scale of Inconel 617 has a loose structure, whereas that of Incoloy 800H is denser, Inconel 617 exhibited significantly more severe internal oxidation than Incoloy 800H. Further, Inconel 617 showed a significant decrease in ultimate tensile strength and plasticity after aging for 200 h, whereas Incoloy 800H maintained its tensile properties satisfactorily. Through control experiment under vacuum, we preliminarily concluded that serious internal oxidation is the primary reason for the decline in the tensile properties of Inconel 617.

Establishment of Analytical Methods for Melamine Related Compounds in Biological Samples (생체시료 중 멜라민 화합물의 미량분석법 개발연구)

  • Han, Kyoung-Moon;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Cho, Yang-Ha;Chai, Gap-Yong;Kwon, Soon-Jae;Lee, Jun-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.125-141
    • /
    • 2011
  • Melamine has raised international concerns for its catastrophic health effects from tainted infant formula. This report concerns the developmental validation of a sensitive HPLC/MS/MS and GC/MS methods about melamine and cyanuric acid in human urine and serum. Analytical detection ranges of LC/MS was from 0.2 to 5.0 ng/mL and 2.0 to 60.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 0.2 ng/mL for both analytes in human urine and serum by LC/MS/MS. The range of recovery was 91.6%, and 107.6% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was from 2.0%, to 11.8% for cyanuric acid and melamine in urine. The range of recovery was from 94.9%, to 119.0% about cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.7%, and 13.5% about cyanuric acid and melamine in serum. Analytical detection ranges of GC/MS were 5.0 to 100.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 5.0 ng/mL for both analytes in human urine and serum by GC/MS. The range of recovery was from 83.7%, to 114.5% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was 3.5%, and 10.7% for cyanuric acid and melamine in urine. The range of recovery was 94.4%, and 110.7% for cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.9%, and 13.8% for cyanuric acid and melamine in serum. Several changes were taken to optimize performance by this method.

철도신호시스템에서의 향상된 안전성확보방안에 대한 연구

  • 이종우;신덕호;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.9-18
    • /
    • 2003
  • This paper discuss advanced safety in the railway signaling system. The specified methods and HAZOP about Hazard identification and analysis of railway signalling system were studied, and loss analysis and ALARP model in order to calculate safety as a standard capacity were proposed. It was also resulted from Hazard identification, analysis and evaluation by applying advanced safety to the railway signalling system.

Methodology for Estimating Safety Benefits of Advanced Driver Assistant Systems (첨단 운전자지원시스템의 교통안전 효과추정 방법론)

  • Jeong, Eunbi;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.65-77
    • /
    • 2013
  • Recent advanced sensors and communication technologies have been widely applied to advanced safety vehicle (ASV) for reducing traffic accident and injury severity. To apply the advanced safety vehicle technologies, it is important to quantify the safety benefits, which is a fundamental for justifying application. This study proposed a methodology for quantifying the effectiveness of the advanced driver assistant system (ADAS), and applied the methodology to lane departure warning system (LDWS) and automatic emergency braking system (AEBS) which are typical advanced driver assistant systems. When the proposed methodology is applied to 2008-2010 gyeonggi-province crash data, LDWS would reduce about 10~14% of relevant crashes such as head-on, run-off-the road, rollover and fixed-object collisions on the road. In addition, AEBS could potentially prevent about 50% of total rear-end crashes. The outcomes of this study support decision making for developing not only vehicular technology but also relevant safety policies.

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF