• Title/Summary/Keyword: Advanced Propagation Model (APM)

Search Result 2, Processing Time 0.015 seconds

Analysis of Radio Interference through Ducting for 2.5 GHz WiMAX Service

  • Son, Ho-Kyung;Kim, Jong-Ho;Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • Radio interference has been occurring in mobile communication services on the southern seashore in Korea. Monitoring the radio interference signal revealed that the main reason for the radio interference was a radio ducting signal coming from the seaside of Japan. In this paper, we have analyzed the effect of interference on WiMAX service using a 2.5 GHz frequency band between Korea and Japan. We focus on the interference scenario from base station to base station and we use the Minimum Coupling Loss (MCL) method for interference analysis and the Advanced Propagation Model (APM) for calculating the propagation loss in ducts. The propagation model is also compared with experimental measurement data. We confirm that the interfering signal strength depends on the antenna height and this result can be applied to deployment planning for each system with an interference impact acceptable to both parties.

Performance Prediction and Analysis of Identification Friend or Foe(IFF) Radar by using Modeling & Simulation Methodology (M&S 기법을 통한 피아식별 레이다 성능예측 및 분석)

  • Kim, Hyunseung;Park, Myunghoon;Jeon, Woojoong;Hong, Sungmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.159-167
    • /
    • 2020
  • In actual battlefield environment, IFF radar plays an important role in distinguishing friend or foe targets and assigning unique identification code to management. Performance of IFF radar is greatly affected by radio environment including atmosphere and terrain, target maneuvering and operation mode. In this paper, M&S tool is consisted of interrogator(IFF radar) and answering machine(target) for radar performance analysis. The wave propagation model using APM(Advanced Propagation Model) and radar actuator system were modeled by considering beam waveform of individual operation beam mode. Using this tool, IFF radar performance was analyzed through two experimental results. As a result, it is expected that performance of IFF radar can be predicted in the operational environment by considering target maneuvering and operation beam mode.