• Title/Summary/Keyword: Advanced Power Reactor 1400 (APR 1400)

검색결과 73건 처리시간 0.019초

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

Development of a Crew Resource Management Training Program for Reduction of Human Errors in APR-1400 Nuclear Power Plant (국내 원자력발전소 인적오류 저감을 위한 Crew Resource Management 교육훈련체계 개발)

  • Kim, Sa-Kil;Byun, Seong-Nam;Lee, Dhong-Hoon;Jeong, Choong-Heui
    • Journal of the Ergonomics Society of Korea
    • /
    • 제28권1호
    • /
    • pp.37-51
    • /
    • 2009
  • The nuclear power industry in the world has recognized the importance of integrating non-technical and team skills training with the technical training given to its control room operators to reduce human errors since the Three Mile Island and Chernobyl accidents. The Nuclear power plant (NPP) industry in Korea has been also making efforts to reduce the human errors which largely have contributed to 120 nuclear reactor trips from the year 2001 to 2006. The Crew Resource Management (CRM) training was one of the efforts to reduce the human errors in the nuclear power industry. The CRM was developed as a response to new insights into the causes of aircraft accidents which followed from the introduction of flight recorders and cockpit voice recorders into modern jet aircraft. The CRM first became widely used in the commercial airline industry, but military aviation, shipboard crews, medical and surgical teams, offshore oil crews, and other high-consequence, high-risk, time-critical industry teams soon followed. This study aims to develop a CRM training program that helps to improve plant performance by reducing the number of reactor trips caused by the operators' errors in Korean NPP. The program is; firstly, based on the work we conducted to develop a human factors training from the applications to the Nuclear Power Plant; secondly, based on a number of guidelines from the current practicable literature; thirdly, focused on team skills, such as leadership, situational awareness, teamwork, and communication, which have been widely known to be critical for improving the operational performance and reducing human errors in Korean NPPs; lastly, similar to the event-based training approach that many researchers have applied in other domains: aircraft, medical operations, railroads, and offshore oilrigs. We conducted an experiment to test effectiveness of the CRM training program in a condition of simulated control room also. We found that the program made the operators' attitudes and behaviors be improved positively from the experimental results. The more implications of the finding were discussed further in detail.

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제33권1호
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.