• Title/Summary/Keyword: Advanced Power Reactor 1400

Search Result 78, Processing Time 0.021 seconds

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

Computational Study for the Performance of Fludic Device during LBLOCA using TRAC-M (최적계산코드를 이용한 대형 냉각재상실사고시 유량조절기 성능평가에 관한 연구)

  • Chon Woochong;Lee Jae Hoon;Lee Sang Jong
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The APR1400 is an Advanced Pressurized Water Reactor with 3983 MWt power, 2×4 loops, and direct vessel injection system. The Fluidic Device (FD) is adopted to regulate the safety injection flow rate in a Safety Injection Tank (SIT) of APR1400. The performance of a newly designed fluidic Device is evaluated by analyzing a Large Break Loss-of-Coolant Accident (LBLOCA) using TRAC-M/F90, version 3.782. The analysis results show that the TRAC-M code reasonably predicts the important phenomena of blowdown, refill and reflood phases of LBLOCA. The sensitivity studies about gas/water volume changes in a SIT and K factor changes in a SI system were also done to understand the important phenomena with a Fluidic Device in APR1400.

Development of Human Performance Measures for Human Factors Validation in Advanced Nuclear Power Plants (신형원전 주제어실 인적요소 검증을 위한 인적수행도 평가척도 개발)

  • Ha, Jun-Su;Seong, Poong-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.85-96
    • /
    • 2006
  • Main control room(MCR) man-machine interface(MMI) design of advanced nuclear power plants(NPPs) such as APR(advanced power reactor)-1400 can be validated through performance-based tests to determine whether it acceptably supports safe operation of the plant. In this work, plant performance, personnel task, situation awareness, workload, teamwork, and anthropometric/physiological factor are considered as factors for the human performance evaluation. For development of measures in each of the factors, techniques generally used in various industries and empirically proven to be useful are adopted as main measures and some helpful techniques are developed in order to complement the main measures. Also the development of the measures is addressed based on the theoretical background. Finally we discuss the way in which the measures can be effectively integrated and then HUPESS(HUman Performance Evaluation Support System) which is in development based on the integrated way is briefly introduced.

Effects of Significant Duration of Ground Motions on Seismic Responses of Base-Isolated Nuclear Power Plants (지진의 지속시간이 면진원전의 지진거동에 미치는 영향)

  • Nguyen, Duy-Duan;Thusa, Bidhek;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • The purpose of this study is to investigate the effects of the significant duration of ground motions on responses of base-isolated nuclear power plants (NPPs). Two sets of ground motion records with short duration (SD) and long duration (LD) motions, scaled to match the target response spectrum, are used to perform time-history analyses. The reactor containment building in the Advanced Power Reactor 1400 (APR1400) NPP is numerically modeled using lumped-mass stick elements in SAP2000. Seismic responses of the base-isolated NPP are monitored in forms of lateral displacements, shear forces, floor response spectra of the containment building, and hysteretic energy of the lead rubber bearing (LRB). Fragility curves for different limit states, which are defined based on the shear deformation of the base isolator, are developed. The numerical results reveal that the average seismic responses of base-isolated NPP under SD and LD motion sets were shown to be mostly identical. For PGA larger than 0.4g, the mean deformation of LRB for LD motions was bigger than that for SD ones due to a higher hysteretic energy of LRB produced in LD shakings. Under LD motions, median parameters of fragility functions for three limit states were reduced by 12% to 15% compared to that due to SD motions. This clearly indicates that it is important to select ground motions with both SD and LD proportionally in the seismic evaluation of NPP structures.

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Event diagnosis method for a nuclear power plant using meta-learning

  • Hee-Jae Lee;Daeil Lee;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1989-2001
    • /
    • 2024
  • Artificial intelligence (AI) techniques are now being considered in the nuclear field, but application faces with the lack of actual plant data. For this reason, most previous studies on AI applications in nuclear power plants (NPPs) have relied on simulators or thermal-hydraulic codes to mimic the plants. However, it remains uncertain whether an AI model trained using a simulator can properly work in an actual NPP. To address this issue, this study suggests the use of metadata, which can give information about parameter trends. Referred to here as robust AI, this concept started with the idea that although the absolute value of a plant parameter differs between a simulator and actual NPP, the parameter trend is identical under the same scenario. Based on the proposed robust AI, this study designs an event diagnosis algorithm to classify abnormal and emergency scenarios in NPPs using prototypical learning. The algorithm was trained using a simulator referencing a Westinghouse 990 MWe reactor and then tested in different environments in Advanced Power Reactor 1400 MWe simulators. The algorithm demonstrated robustness with 100 % diagnostic accuracy (117 out of 117 scenarios). This indicates the potential of the robust AI-based algorithm to be used in actual plants.

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.

MAJOR THERMAL-HYDRAULIC PHENOMENA FOUND DURING ATLAS LBLOCA REFLOOD TESTS FOR AN ADVANCED PRESSURIZED WATER REACTOR APR1400

  • Park, Hyun-Sik;Choi, Ki-Yong;Cho, Seok;Kang, Kyoung-Ho;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.257-270
    • /
    • 2011
  • A set of reflood tests has been performed using ATLAS, which is a thermal-hydraulic integral effect test facility for the pressurized water reactors of APR1400 and OPR1000. Several important phenomena were observed during the ATLAS LBLOCA reflood tests, including core quenching, down-comer boiling, ECC bypass, and steam binding. The present paper discusses those four topics based on the LB-CL-11 test, which is a best-estimate simulation of the LBLOCA reflood phase for APR1400 using ATLAS. Both homogeneous bottom quenching and inhomogeneous top quenching were observed for a uniform radial power profile during the LB-CL-11 test. From the observation of the down-comer boiling phenomena during the LB-CL-11 test, it was found that the measured void fraction in the lower down-comer region was relatively smaller than that estimated from the RELAP5 code, which predicted an unrealistically higher void generation and magnified the downcomer boiling effect for APR1400. The direct ECC bypass was the dominant ECC bypass mechanism throughout the test even though sweep-out occurred during the earlier period. The ECC bypass fractions were between 0.2 and 0.6 during the later test period. The steam binding phenomena was observed, and its effect on the collapsed water levels of the core and down-comer was discussed.

Analysis of control rod driving mechanism nozzle rupture with loss of safety injection at the ATLAS experimental facility using MARS-KS and TRACE

  • Hyunjoon Jeong;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2002-2010
    • /
    • 2024
  • Korea Atomic Energy Research Institute (KAERI) has operated an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), with reference to the APR1400 (Advanced Power Reactor 1400) for tests for transient and design basis accidents simulation. A test for a loss of coolant accident (LOCA) at the top of the reactor pressure vessel (RPV) had been conducted at ATLAS to address the impact of the loss of safety injections (LSI) and to evaluate accident management (AM) actions during the postulated accident. The experimental data has been utilized to validate system analysis codes within a framework of the domestic standard problem program organized by KAERI in collaboration with Korea Institute of Nuclear Safety. In this study, the test has been analyzed by using thermal-hydraulic system analysis codes, MARS-KS 1.5 and TRACE 5.0 Patch 6, and a comparative analysis with experimental and calculation results has been performed. The main objective of this study is the investigation of the thermal-hydraulic phenomena during a small break LOCA at the RPV upper head with the LSI as well as the predictability of the system analysis codes after the AM actions during the test. The results from both codes reveal that overall physical behaviors during the accident are predicted by the codes, appropriately, including the excursion of the peak cladding temperature because of the LSI. It is also confirmed that the core integrity is maintained with the proposed AM action. Considering the break location, a sensitivity analysis for the nodalization of the upper head has been conducted. The sensitivity analysis indicates that the nodalization gave a significant impact on the analysis result. The result emphasizes the importance of the nodalization which should be performed with a consideration of the physical phenomena occurs during the transient.

A practical challenge-response authentication mechanism for a Programmable Logic Controller control system with one-time password in nuclear power plants

  • Son, JunYoung;Noh, Sangkyun;Choi, JongGyun;Yoon, Hyunsoo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1791-1798
    • /
    • 2019
  • Instrumentation and Control (I&C) systems of nuclear power plants (NPPs) have been continuously digitalized. These systems have a critical role in the operation of nuclear facilities by functioning as the brain of NPPs. In recent years, as cyber security threats to NPP systems have increased, regulatory and policy-related organizations around the world, including the International Atomic Energy Agency (IAEA), Nuclear Regulatory Commission (NRC) and Korea Institute of Nuclear Nonproliferation and Control (KINAC), have emphasized the importance of nuclear cyber security by publishing cyber security guidelines and recommending cyber security requirements for NPP facilities. As described in NRC Regulatory Guide (Reg) 5.71 and KINAC RS015, challenge response authentication should be applied to the critical digital I&C system of NPPs to satisfy the cyber security requirements. There have been no cases in which the most robust response authentication technology like challenge response has been developed and applied to nuclear I&C systems. This paper presents a challenge response authentication mechanism for a Programmable Logic Controller (PLC) system used as a control system in the safety system of the Advanced Power Reactor (APR) 1400 NPP.