• 제목/요약/키워드: Advanced Phase Isolation Ditch

검색결과 5건 처리시간 0.019초

Advanced Phase Isolation Ditch 공정에 의한 하수 고도처리 성능평가 (Performance Evaluation of Advanced Municipal Wastewater Treatment by Advanced Phase Isolation Ditch (APID) Process)

  • 안상우;곽성근;윤영한;정무근;박재로;박재우
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.618-625
    • /
    • 2008
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to evaluate the effluent BOD, SS, T-N, and T-P concentrations as process capable and stable parameters for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent BOD, SS, T-N, and T-P concentrations were 4.56, 5.20, 9.30, and 1.75 mg/L at the conventional mode and 3.95, 3.17, 7.65, and 1.18 mg/L at the modified mode. The modified mode (BOD: 3.69, SS: 3.19, T-N: 1.27, and T-P: 0.69) increased the process capability more than the conventional mode (BOD: 1.80, SS: 1.05, T-N: 2.17, and T-P: 0.15) in this study. If process capability over 1.0, this process is capable and stable to treat wastewater. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가 (Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch)

  • 홍기호;장덕;한상배
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발 (Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season)

  • 곽성근;안상우;정무근;박재로;박재우
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

APID공정 내 공정진단을 위한 dynamic $\bar{x}$-R 관리도의 적용 (Application of Dynamic $\bar{x}$-R Control Chart for Advanced Phase Isolation Ditch (APID) Process)

  • 안상우;곽성근;정영욱;정무근;박재우
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.704-712
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to evaluate and monitor the effluent water quality ($BOD_5$, SS, T-N, and T-P) and operating conditions (Influent, SVI, SRT, and HRT) as process capable and stable parameters for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 7.7, 5.6, 10.8, and 1.6 mg/L. Trend analysis of influent $BOD_5$, SS, T-N, and T-P in APID process were illustrated that APID process need for more strong APID process management on the winter session, such as developing new intermediated aeration mode, operating methods, and managements strategy. At the application of control chart, the signal of uncommon effects at APID process was determined much higher existing control chart tntr conventional control chart in this study. These results indicate that conventional control chart has been collected and determined cleary signal at only stable situation. Therefore, newly developed APID process of dynamic control chart can be one of the useful tool for monitoring and management process.

수학적 모델을 활용한 alternating 형태 공정과 recirculating 형태 공정의 성능 평가 (Performance Evaluation between Alternating Type Process and Recirculating Type Process by using a Mathematical Model)

  • 김효수;김예진;차재환;최수정;민경진;김창원
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.160-167
    • /
    • 2010
  • In this research, the performance evaluation between an alternating type process and a recirculating type process was investigated by using mathematical models. The Advanced Phase Isolation Ditch (APID) process and the $A^2/O$ process were selected the target processes of the alternating type and recirculating type, respectively. For more quantitative evaluation, 5 performance indexes which included economy and energy efficiency as well as effluent quality were used, and various disturbance conditions of influent were given to the process models. As simulation results, the APID process which had the specific operation modes to use the organic matter in influent effectively showed higher efficiency of denitrification than the $A^2/O$ process. In the case of effluent TSS, the $A^2/O$ process that the retention time in reactors could be maintained stably was more effective than the APID process. In the cases of various disturbance condition, although it was identified that both two processes had similar effluent quality, the sludge production of the $A^2/O$ process showed lower than that of the APID process while the APID process showed higher energy efficiency.