• Title/Summary/Keyword: Advanced PWR

Search Result 139, Processing Time 0.021 seconds

LEU+ loaded APR1400 using accident tolerant fuel cladding for 24-month two-batch fuel management scheme

  • Husam Khalefih;Taesuk Oh;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2578-2590
    • /
    • 2023
  • In this work, a 24-month two-batch fuel management strategy for the APR1400 using LEU + has been investigated, where enrichments of 5.9 and 5.2 w/o are utilized in lieu of the conventional 4-5 w/o UO2 fuel. In addition, an Accident Tolerant Fuel (ATF) clad based on the swaging technology is applied to APR1400 fuel assemblies. In this special ATF clad design, both outer and inner SS316 layers protect the conventional zircaloy clad. Erbia (Er2O3) is introduced as a burnable absorber with two-fold goals to lower the critical boron concentration in the long-cycle LEU + loaded core as well as to handle the LEU + fuel in the existing front-end fuel facilities without renewing the license. Two types of fuel assemblies with different loading of gadolinia (Gd2O3) are considered to control both the reactivity and the core radial power distribution. The erbia burnable absorber is uniformly admixed with UO2 in all fuel pins except for the gadolinia-bearing ones. In this study, two core designs were devised with different erbia loading, and core performance and safety parameters were evaluated for each case in comparison with a core design without any burnable absorbers. The core analysis was done using the two-step method. First, cross-sections are generated by the SERPENT 2 Monte Carlo code, and the 3-D neutronic analysis is performed with an in-house multi-physics nodal code KANT.

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

Dynamic Strain Aging of Zircaloy-4 PWR Fuel Cladding in Biaxial Stress State (가압경수로용 지르칼로이-4 피복관의 2축 응력 인장시 동적 변형 시효)

  • Park, Ki-Seong;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-98
    • /
    • 1989
  • The expanding copper mandrel test performed at three strain rates (3.2$\times$10E -5/s, 2.0$\times$10E-6/s and 1.2$\times$10E-7/s) over 553-873 K temperature range by varying the heating rates (8-1$0^{\circ}C$/s, 1-2$^{\circ}C$/s and 0.5$^{\circ}C$/s) in air and in vacuum (5$\times$10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in $\alpha$-zirconium and Zircaloy-2 (207-220 KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573 K and 673 K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress ( $\sigma$$^{a}$ $_{y}$ - $\sigma$$^{v}$ $_{y}$ / $\sigma$$^{v}$ $_{y}$ ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase.

  • PDF

Criticality Analyses of Spent Fuel Shipping Cask (핵연료(核燃料) 수송용기(輸送容器)에 대(對)한 핵림계분석(核臨界分析))

  • Min, Duck-Kee;Ro, Seung-Gy;Kwack, Eun-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 1984
  • Criticality analyses of the KSC-1(Korean Shipping Cask-1) spent fuel shipping cask have been performed with the help of KENO-IV Monte Carlo computer code and 19-group CSLIB 19 cross section set which was generated from AMPX modular system. The analyses followed a benchmark calculation which has been made regard to the B & W CX-10 criticality facility in order to validate the Monte Carlo code cross section set described above. The KSC-1 shipping cask seems to be safe in the criticality point of view for the transport of one PWR spent fuel assembly under the normal conditions as well as the hypothetical accident conditions.

  • PDF

HIGH TEMPERATURE OXIDATION OF NB-CONTAINING ZR ALLOY CLADDING IN LOCA CONDITIONS

  • Chuto, Toshinori;Nagase, Fumihisa;Fuketa, Toyoshi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.163-170
    • /
    • 2009
  • In order to evaluate high-temperature oxidation behavior of the advanced alloy cladding under LOCA conditions, isothermal oxidation tests in steam were performed with cladding specimens prepared from high burnup PWR fuel rods that were irradiated up to 79 MWd/kg. Cladding materials were $M5^{(R)}$ and $ZIRLO^{TM}$, which are Nb-containing alloys. Ring-shaped specimens were isothermally oxidized in flowing steam at temperatures from 1173 to 1473 K for the duration between 120 and 4000s. Oxidation rates were evaluated from measured oxide layer thickness and weight gain. A protective effect of the preformed corrosion layer is seen for the shorter time range at the lower temperatures. The influence of pre-hydriding is not significant for the examined range. Alloy composition change generally has small influence on oxidation in the examined temperature range, though $M5^{(R)}$ shows an obviously smaller oxidation constant at 1273 K. Consequently, the oxidation rates of the high burnup $M5^{(R)}$ and $ZIRLO^{TM}$ cladding are comparable or lower than that of unirradiated Zircaloy-4 cladding.

Scaling Analysis of Thermal Hydraulics Phenomena in the Nuclear Reactor Vessel Downcomer during the Reflood Phase of LBLOCA (대형냉각재 상실사고 재관수 기간 동안, 차세대 원자로 강수부 내의 열수력 현상 모의를 위한 실험장치 척도해석)

  • Yun, B.J.;Song, C.H.;Kwon, T.S.;Euh, D.J.;Chu, I.C.;Yoon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.821-827
    • /
    • 2001
  • As one of the advanced design features of the Korea next generation reactor, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLl) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood period of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, a new scaling method, using time and velocity reduced linear scaling law, is suggested for the design of a scaled-down experimental facility to investigate the direct ECC bypass phenomena in PWR downcomer.

  • PDF

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

An Experimental Study on PWR Nuclear Fuel Assembly Vibration (경수로 핵연료집합체 진동의 실험적 고찰)

  • 장영기;김규태;조규종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.82-87
    • /
    • 2003
  • Nuclear fuel with a big slenderness ratio is susceptible to flow-induced vibration under very severe conditions of high temperature, high flow and exposure to irradiation in nuclear reactor. The fuel assembly should, therefore, be designed to escape any resonance due to the vibration during the reactor operation, in particular, in case of the design changes. In addition, the amplitudes due to the grid vibration, the fuel rod vibration and the fuel assembly vibration should be minimized to reduce the grid-to-rod fretting wear. Fuel assembly vibration tests in air at room temperature and in water at high temperature have been performed to investigate fuel vibration behaviors. The frequency and damping during the test in air have been compared to those in water. Through the hydraulic test, the advanced assembly has been evaluated not to be susceptible to any resonance. In addition, the test data from the tests can be used to make fuel model and to evaluate grid-to-rod fretting wear.

  • PDF