• Title/Summary/Keyword: Advanced Interface Tracking Method

Search Result 6, Processing Time 0.022 seconds

CURRENT STATUS OF THERMAL/HYDRAULIC FEASIBILITY PROJECT FOR REDUCED- MODERATION WATER REACTOR (2) - DEVELOPMENT OF TWO-PHASE FLOW SIMULATION CODE WITH ADVANCED INTERFACE TRACKING METHOD

  • Yoshida, Hiroyuki;Tamai, Hidesada;Ohnuki, Akira;Takase, Kazuyuki;Akimoto, Hajime
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2006
  • We start to develop a predictable technology for thermal-hydraulic performance of the RMWR core using an advanced numerical simulation technology. As a part of this technology development, we are developing the advanced interface tracking method to improve the conservation of volume of fluid. The present paper describes a part of the development of the twophase flow simulation code TPFIT with the advanced interface tracking method. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results of numerical simulation, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values obtained by the advanced neutron radiography technique including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Real-time Avatar Animation using Component-based Human Body Tracking (구성요소 기반 인체 추적을 이용한 실시간 아바타 애니메이션)

  • Lee Kyoung-Mi
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 2006
  • Human tracking is a requirement for the advanced human-computer interface (HCI), This paper proposes a method which uses a component-based human model, detects body parts, estimates human postures, and animates an avatar, Each body part consists of color, connection, and location information and it matches to a corresponding component of the human model. For human tracking, the 2D information of human posture is used for body tracking by computing similarities between frames, The depth information is decided by a relative location between components and is transferred to a moving direction to build a 2-1/2D human model. While each body part is modelled by posture and directions, the corresponding component of a 3D avatar is rotated in 3D using the information transferred from the human model. We achieved 90% tracking rate of a test video containing a variety of postures and the rate increased as the proposed system processed more frames.

  • PDF

Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model (타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.255-262
    • /
    • 2012
  • Human motion tracking algorithm is receiving attention from many research areas, such as human computer interaction, video conference, surveillance analysis, and game or entertainment applications. Over the last decade, various tracking technologies for each application have been demonstrated and refined among them such of real time computer vision and image processing, advanced man-machine interface, and so on. In this paper, we introduce cost-effective and real-time human motion tracking algorithms based on depth image 3D point matching with a given superellipsoid body representation. The body representative model is made by using parametric volume modeling method based on superellipsoid and consists of 18 articulated joints. For more accurate estimation, we exploit initial inverse kinematic solution with classified body parts' information, and then, the initial pose is modified to more accurate pose by using 3D point matching algorithm.

W3C based Interoperable Multimodal Communicator (W3C 기반 상호연동 가능한 멀티모달 커뮤니케이터)

  • Park, Daemin;Gwon, Daehyeok;Choi, Jinhuyck;Lee, Injae;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.140-152
    • /
    • 2015
  • HCI(Human Computer Interaction) enables the interaction between people and computers by using a human-familiar interface called as Modality. Recently, to provide an optimal interface according to various devices and service environment, an advanced HCI method using multiple modalities is intensively studied. However, the multimodal interface has difficulties that modalities have different data formats and are hard to be cooperated efficiently. To solve this problem, a multimodal communicator is introduced, which is based on EMMA(Extensible Multimodal Annotation Markup language) and MMI(Multimodal Interaction Framework) of W3C(World Wide Web Consortium) standards. This standard based framework consisting of modality component, interaction manager, and presentation component makes multiple modalities interoperable and provides a wide expansion capability for other modalities. Experimental results show that the multimodal communicator is facilitated by using multiple modalities of eye tracking and gesture recognition for a map browsing scenario.