• Title/Summary/Keyword: Adult stem cell

Search Result 184, Processing Time 0.023 seconds

Neurogenic potentials of human amniotic fluid-derived stem cells according to expression levels of stem cell markers and ingredients of induction medium

  • Lim, Eun Hye;Cho, Jung Ah;Park, Ho;Song, Tae Jong;Kim, Woo Young;Kim, Kye Hyun;Lee, Kyo Won
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Purpose: We investigated the neurogenic potentials of amniotic fluid-derived stem cells (AFSCs) according to the expression levels of stem cell markers and ingredients in the neural induction media. Materials and Methods: Four samples of AFSCs with different levels of Oct-4 and c-kit expression were differentiated neurally, using three kinds of induction media containing retinoic acid (RA) and/or a mixture of 3-isobutyl-1-methylxanthine/indomethacin/insulin (neuromix), and examined by immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) for their expression of neurospecific markers. Results: The cells in neuromix-containing media displayed small nuclei and long processes that were characteristic of neural cells. RT-PCR analysis revealed that the number of neural markers showing upregulation was greater in cells cultured in the neuromix-containing media than in those cultured in RA-only medium. Neurospecific gene expression was also higher in Oct-4 and c-kit double-positive cells than in c-kit-low or -negative cells. Conclusion: The stem cell marker c-kit (rather than Oct-4) and the ingredient neuromix (rather than RA) exert greater effects on neurogenesis of AFSCs.

Reversine, Cell Dedifferentiation and Transdifferentiation (Reversine과 세포의 역분화 및 교차분화)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.394-401
    • /
    • 2020
  • As embryonic stem cells become pluripotent, they may cause tumor development when injected into a host. Therefore, researchers are focusing heavily on the therapeutic potential of tissue-specific stem cells (adult stem cells) without resultant tumor formation. Adult stem cells can proliferate for a limited number of generations and are restricted to certain cell types (multipotent). Mature tissue cell types in mammals cannot be intrinsically dedifferentiated or transdifferentiated to adult stem cells. Hence, the technology of induced pluripotent stem cells (iPSCs) for reprogramming adult somatic cells was introduced in 2006, ushering in a new era in adult stem cell research. Although iPSCs have been widely used in the field, the approach has several limitations: instability of the reprogramming process, risk of incomplete reprogramming, and exposure to transgenes integrated into the cell genome. Two years before the introduction of the iPSC technique, the synthetic small molecule 2,6-disubstituted purine, called reversine, was introduced. Reversine can induce the dedifferentiation of committed cells into multipotent progenitor-type cells by reprogramming and converting adult cells to other cell types under appropriate stimuli. Thus, it can be used as a chemically induced multipotent cell agent to overcome the limitations of iPSCs. Also, as an alternative therapeutic approach for treating obesity, it can be used to generate beige cells by browning white adipocytes. While reversine has the potential to act as an anti-cancer agent, this review focuses on its role in differentiation, dedifferentiation, and transdifferentiation in somatic cells.

Mal-differentiation of Stem Cells: Cancer and Ageing (줄기세포의 분화 결손으로 인한 노화와 암화)

  • Lee, Mi-Ok;Cha, Hyuk-Jin
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.183-188
    • /
    • 2011
  • Adult stem cells, which have characteristic of self-renewal and multipotency, are specialized cell types, responsible for the tissue regeneration of the damaged tissue. Recent studies suggest that stem cells senescence (or stem cells' ageing) is closely associated with the variety of ageing-related phenotypes such as tissue atrophy, degenerative diseases and onset of cancers. During ageing, declining of stem cells function and subsequently occurring mal-differentiation of stem cells would be important to understand the biological process of development of ageing-related phenotypes such as tissue degenerations and cancers. This review focuses on the DNA damage stress as a cause of senescence of stem cells and their mal differentiation, which is closely link to defect of regeneration potentials and neoplastic transformation. Understanding of molecular mechanisms governingsuch events is likely to have important implications for developing novel avenues for balancing tissue homeostasis longer period of time, further leading to 'Healthy ageing'.

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy

  • Park, Yun-Gwi;Son, Yeo-Jin;Moon, Sung-Hwan;Park, Soon-Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.67-79
    • /
    • 2022
  • Currently, there is no treatment to reverse or cure heart failure caused by ischemic heart disease and myocardial infarction despite the remarkable advances in modern medicine. In addition, there is a lack of evidence regarding the existence of stem cells involved in the proliferation and regeneration of cardiomyocytes in adult hearts. As an alternative solution to overcome this problem, protocols for differentiating human pluripotent stem cell (hPSC) into cardiomyocyte have been established, which further led to the development of cell therapy in major leading countries in this field. Recently, clinical studies have confirmed the safety of hPSC-derived cardiac progenitor cells (CPCs). Although several institutions have shown progress in their research on cell therapy using hPSC-derived cardiomyocytes, the functions of cardiomyocytes used for transplantation remain to be those of immature cardiomyocytes, which poses a risk of graft-induced arrhythmias in the early stage of transplantation. Over the last decade, research aimed at achieving maturation of immature cardiomyocytes, showing same characteristics as those of mature cardiomyocytes, has been actively conducted using various approaches at leading research institutes worldwide. However, challenges remain in technological development for effective generation of mature cardiomyocytes with the same properties as those present in the adult hearts. Therefore, in this review, we provide an overview of the technological development status for maturation methods of hPSC-derived cardiomyocytes and present a direction for future development of maturation techniques.

Establishment of Stem-like Cells from Human Umbilical Cord Vein

  • Park, Seah;Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.78-78
    • /
    • 2003
  • Adult stem cells can make identical copies of themselves for long periods of time. They also give rise to many differentiated mature cell types that have characteristic morphology and specialized function. Human adult stem cells are the attractive raw materials for the cell/tissue therapy, however, it is not easy to get from the adult tissues. In the present study, we tried to isolate a cell population derived from human umbilical cord vein which has been discarded after birth. The cells were isolated after treatment of the umbilical vein with collagenase or trypsin. After 3 days of culture, two kinds of cell populations were found consisting of adherent cells with endothelial cell-like and fibroblast-like morphology, respectively. When these cells were subcultured 12 times over a period of 3 months, almost cells appeared uniformly to exhibit fibroblastoid morphology which was different from that of mesenchymal stem cells obtained from human bone marrow The results of RT-PCR analyses showed distinct expression of BMP-4, oct-4, and SCF genes but not of GATA, PAX-6 and Brachyury genes. On immunohistochemical staining, the cells were negative for the von Willebrand factor(vWF), alpha-smooth muscle actin and placental alkaline phosphatase. From these observations, it is suggested that stem-like cells might be present in human umbilical cord vein.

  • PDF

Differentiation of Mesenchymal Stem Cell-like Cell from Feeder Free Cultured Human Embryonic Stem Cells using Direct Induction System (Feeder-free에서 배양된 인간배아줄기세포의 직접분화유도 방법을 이용한 간엽줄기세포로의 분화)

  • Lee, Min-Ji;Lee, Jae-Ho;Kim, Ju-Mi;Shin, Jeong-Min;Park, Soon-Jung;Chung, Sun-Hwa;Lee, Kyung-Il;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have the multipotent capacity and this potential can be applied for obtaining valuable cell types which can use for cell therapy on various regenerative diseases. However, insufficient availability of cellular source is the major problem in cell therapy field using adult stem cell sources. Recently, human embryonic stem cells (hESCs) have been highlighted to overcome a limitation of adult cellular sources because they retain unlimited proliferation capacity and pluripotency. To use of hESCs in cell therapy, above all, animal pathogen free culture system and purification of a specific target cell population to avoid teratoma formation are required. In this study, we describe the differentiation of a mesenchymal stem cell-like cells population from feeder-free cultured hESCs(hESC-MSCs) using direct induction system. hESC-MSCs revealed characteristics similar to MSCs derived from bone marrow, and undifferentiated cell markers were extremely low in hESC-MSCs in RT-PCR, immunostaining and FACS analyses. Thus, this study proffer a basis of effective generation of specialized human mesenchymal stem cell types which can use for further clinical applications, from xenofree cultured hESCs using direct induction system.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Cytolytic Activities of Taxol on Neural Stem Cells

  • Lee, In-Soo;Han, Hye-Eun;Lee, Hye-Young;Kim, Seung-U.;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • Stem cells have been the subject of increasing scientific interest because of their utility in numerous biomedical applications. Stem cells are capable of renewing themselves; that is, they can be continuously cultured in an undifferentiated state, giving rise to more specialized cells of the human body. Therefore, stem cells are an important new tools for developing unique, in vitro model systems to test drugs and chemicals and a potential to predict or anticipate toxicity in humans. In the present study, in vitro cultured F3 immortalized human neural stem cell line and in vivo adult Sprague Dawley rats was used to evaluate the cytotoxicity of anticancer drug paclitaxel. In vitro apoptotic activity of paclitaxel was evaluated in F3 cell line by a MTT assay and DAPI test. The cell death was induced with the treatment of 20 nM paclitaxel and chromatin degradation was detected by DAPI staining, which was analyzed by fluorescent microscope. In vivo studies, we also observed nestin immunoreactivity on subventricular zone, which is stem cell rich region in the adult brain of the SD rat. Immunofluorescent staining result shows that pixel intensities of nestin were decreased in a dose dependent manner. These results suggest that paclitaxel is able to induce cytotoxic activity both in F3 neural stem cell line and neural stem cell in SD rat brain.

  • PDF

Stem Cells and Herbal Acupuncture Therapy (줄기세포와 약침요법)

  • Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.8 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.