• Title/Summary/Keyword: Adsorption rate

Search Result 1,048, Processing Time 0.026 seconds

Characterization of dry sorbents for $CO_2$ separation from MSW incineration flue gas (도시생활폐기물 소각장에서 배출되는 이산화탄소 포집용 건식 흡착제 연구)

  • Kim, Byung-Soon;Lee, Ju-Yeol;Kim, Shin-Do
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.318-324
    • /
    • 2010
  • In this study, commercial pellet type sorbents for the collection of $CO_2$ from a local municipal waste incinerator were prepared and characterized in terms of adsorption efficiency by varying the operating conditions of a field process. The concentration of $CO_2$ in the flue gas ranged from 8 to 10%, which entered the test packed bed. As a result of this experiment, the sorbent procured from A-company, which is mainly composed of calcium compounds, showed the highest adsorption efficiency. The regeneration efficiency was fairly low, however. It also was found that based on adsorption breakthrough time, the relatively low flow rate of 10 LPM into the bed allowed higher collection efficiency. The higher flow rate of 40 LPM, on the other hand, tended to decrease the retention of the adsorption.

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).

Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbons

  • Goyal, Meenakshi;Singh, Sukhmehar;Bansal, Roop C.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with $HNO_3$ and $O_2$ gas at $350^{\circ}C$ and decreased by degassing at increasing temperatures of $400^{\circ}$, $650^{\circ}$ and $950^{\circ}C$. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.

  • PDF

Adsorption/desorption of CO2 on Activated Carbon Fibers Using Electric Swing Adsorption (활성탄소섬유상에서 전기변동법을 이용한 CO2의 흡/탈착)

  • Shim, JaeWoon;Moon, SeungHyun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.432-437
    • /
    • 2005
  • An electric swing adsorption (ESA) process for recovering highly pure $CO_2$ from the mixed gases was tested. In this study, activated carbon fibers were used as an adsorbent. The activated carbon fibers showed fast adsorption rate and the high adsorption capacity for $CO_2$ adsorption under the condition of the ambient pressure. Activated carbon fiber with higher specific surface area was suitable to repeated adsorption-desorption cycle process, showing consistent breakthrough curve. Especially, the regeneration method by vacuum combined with ESA improved the performance of desorption process by an additional 17% regeneration efficiency compared to a vacuum only method, and showed the high regeneration efficiency at comparatively low 7-8 Wh energy.

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

Removal of Phenol by Granular Activated Carbon from Aqueous Solution in Fixed-Bed Adsorption Column : Parameter Sensitivity Analysis (충진층 흡착관 내에서 입상활성탄에 의한 페놀 제거 : 매개변수 감응도 해석)

  • 윤영삼;황종연;권성헌;김인실;박판욱
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.773-782
    • /
    • 1998
  • The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixed-bed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.

  • PDF

A Comparative Study for Removal of Mercury and Lead by Microorganisms (미생물흡착을 이용한 수은과 납의 제거에 관한 비교 연구)

  • 서정호;서명교;곽영규;강신묵;노종수;이국의;최윤찬
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 1998
  • A study on the removal of mercury and lead by microorganisms, Saccharomyces cerevisiae and Aureobasidium pullulans, was performed, in which the comparison of adsorption model between these two heavy metals was done. The amounts of mercury removed were more than those of lead in both microorganisms. In case of mercury, the adsorption isotherm of S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. In the case of lead, however, the adsorption isotherm had opposite results. The adsorption rate of mercury to S. cerevisiae was faster than that of A. pullulans, but in the case of lead, it revealed contrary results. It seems, therefore, that the type of microorganisms used as biosorbents should be selected differently with the type of heavy metals removed for applying these to real adsorption process.

  • PDF

Adsorption Behavior of Cationic Starches onto Deinked Pulp and Thermomechnical Pulp (탈묵펄프와 열기계펄프에 대한 양성전분 흡착 거동)

  • 허동명;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 1999
  • Although many researches have been made on the adsorption of cationic starches onto chemical pulp fibers, only limited studies have been reported for deinked pulp(DIP) and thermomechanical pulpI(TMP). In this experiment, the adsorption behavior of the cationic starches onto DIP and TMP fibers investigated. Almost complete adsorption of cationic starches onto the pulp fibers were observed when the addition rate of starch was low. Adsorption ratio decreased abruptly when 3.5% and 4.0% of cationic starches were adsorbed onto deinked pulp and thermomechanical pulp, respectively. Adsorption of cationic starches increased as the degree of substitution decreased and as the pH of the pulp slurry increased. TMP fibers adsorbed more cationic starches than DIP because of its greater charge density, and this led to greater improvement in strength properties for the TMP sheets.

  • PDF

Study on Adsorption Characteristics of Tharonil from Aqueous Solution by Activated Carbon Adsorption (활성탄에 의한 Tharonil의 흡착특성에 관한 연구)

  • 이종집;유용호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2000
  • The adsorption characteristics of Tharonil on granular activated carbon were experimentally investigated in an adsorber and in a packed column. It was estabilished that the adsorption equilibrium of Tharonil on granular activated carbon was more successfully fitted by Freundlich isotherm equation than Langmuir isotherm equation in the concentration range from 1 to 1000 mg/1. Intraparticle diffusivities (pore and surface diffusivity) of Tharonil were estimated by the concentration-time curve and adsorption isotherm. The estimated values of pore diffusivity and surface diffusivity are $6.70{\times}10^{-6}$ and $2.0{\times}10^{-9}cm^2/s$, respectively. From comparison of intraparticle diffusivities, it was found that surface diffusion was the limiting step for adsorption rate. The break time and breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results.

  • PDF

Protein Aggregation and Adsorption upon In vitro Refolding of Recombinant Pseudomonas Lipase

  • Lee, Young-Phil;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.456-460
    • /
    • 1996
  • Recombinant Pseudomonas lipase was used to study protein aggregation and adsorption upon in vitro refolding. Protein adsorption as well as aggregation was responsible for major side reactions upon in vitro refolding as a function of protein concentration. The optimal range of protein concentration was determined by the relative contribution of protein aggregation and adsorption. Above the optimal range, the yield of active lipase inversely correlated with protein aggregation, showing a competition between folding and aggregation. However, adsorption of protein rather than protein aggregation is thought to contribute as a major side reaction of the refolding process at sub-optimal concentrations at which the formation of aggregates should be more reduced. Protein aggregation was influenced by the amount of guanidine hydrochloride in the refolding solvent. The refolding temperature was a critical factor determining the extent of protein aggregation. The refolding yield was also affected by the dilution fold and dilution mode, which suggests that the refolding process might kinetically compete with the rate of mixing.

  • PDF