• Title/Summary/Keyword: Adsorption isotherm equation

Search Result 145, Processing Time 0.026 seconds

Physical Adsorption of Nitrogen Gas on BN, Alumina, and Silica-Gel Powders

  • Cho, Hyun-Woo;Kim, Jung-Soo;Yoo, Eun-Ah;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.244-248
    • /
    • 1988
  • Multilayer adsorption isotherms of nitrogen on hexagonal boron nitride, ${\gamma}$-alumina, and silica-gel powders are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume (V) of the adsorbed gas are plotted against the statistical thickness(t) of the adsorbed layer, and the t-method area are calculated from the slope of these V-t plots to compare with the BET area. A number of universal adsorption isotherms and the Frenkel-Halsey-Hill equation are used one after another in calculating the statistical thickness. The appropriateness of the FHH equation as an universal adsorption isotherm is discussed finally.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Application of Response Surface Methodology (RSM) on Adsorption of Cs Ion in Aqueous Solution with Zeolite X Synthesized from Coal Fly Ash (석탄비산재로 합성한 제올라이트 X에 의한 수중의 Cs 이온 흡착에 반응표면분석법 적용)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2017
  • The batch experiments and response surface methodology (RSM) have been applied to the investigation of the Cs adsorption with zeolite X synthesized using coal fly ash generated from the thermal power plant. Regression equation formulated for Cs adsorption was represented as a function of response variables. The model was highly relevant because the decision coefficient ($r^2$) was 0.9630. It was confirmed from the statistical results that the removal efficiency of Cs was affected by the order of experimental factors as pH > Cs concentration > temperature. The adsorption kinetics were more accurately represented by a pseudo second-order model. The maximum adsorption capacity calculated from the Langmuir isotherm model was $151.52mg\;g^{-1}$ at 293 K. Also, according to the thermodynamic parameters calculated from Vant Hoff equation, it could be confirmed that the adsorption reaction was an endothermic reaction and a spontaneous process.

Adsorption Characteristics of Radioactive Cs Ion by Zeolite X (제올라이트 NaX에 의한 방사성 물질인 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.66-73
    • /
    • 2017
  • This study was to evaluate the influential parameters such as intial Cs concentration, reaction temperature, contact time and pH variation of solution on Cs adsorption. Using the experimental data, adsorption kinetics, isotherms and thermodynamic properties were analyzed. The Cs ion adsorption of the zeolite X was effective in the range from pH 5 to 10 and reached equilibrium after 60 minutes. The adsorption kinetics and isotherms of Cs ion with the zeolite X was described well by the pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacities of Cs ion calculated from Langmuir isotherm model at 293~333 K were from 303.03 mg/g to 333.33 mg/g. It was found that thermodynamic property of Cs ion absorption on the zeolite X was spontaneous and endothermic reaction. The experimental data were fitted a second-order polynomial equation by the multiple regression analysis. The values of the dependent variable calculated by this best fitted model equation were in very good agreement with the experimentally obtained values.

A Study on the Removal Characteristics of Phenol Using Waste CDQ Dust as Adsorbent (폐CDQ 분진을 흡착제로 한 페놀제거특성에 관한 연구)

  • Kim, Jin-Wha;Lee, Jung-Min;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1213-1223
    • /
    • 2000
  • The adsorption characteristics of phenol has been studied by using CDQ (Cokes Drying Quenching) dust as an adsorbent. The adsorption capacity of CDQ dust was shown to be 42% about removal for 300 ppm phenol solution at the equilibrium adsorption time of 60 min. Removal percentage of phenol increased as the initial phenol concentration was raised in the experimental conditions and the adsorption behavior was explained well by Freundlich adsorption isotherm. Kinetic study showed that the adsorption followed 1st, 1.5th, and 2nd-order rate equation in the sequence as the adsorption time passed. Since the adsorption amount of phenol was increased as the adsorption temperature was raised, the adsorption was thought to be endothermic, and several thermodynamic parameters have been calculated based upon experimental data. Adsorbed amount of phenol on CDQ dust changed little according to the variation in the solution pH except for the slight decrease under the strong alkaline condition.

  • PDF

Adsorption Characteristics of Lead on Kaolinite (카올리나이트의 납 흡착 특성)

  • 장경수;강병희
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.24-30
    • /
    • 2002
  • The laboratory adsorption batch tests were performed to investigate the adsorption characteristics of Pb on kaolinite. The characteristics such as adsorption equilibrium time, adsorption capacity, adsorption isotherm were studied, and also the effects of pH and the mixing ratio on the adsorption of Pb on kaolinite were investigated. Test results show that the adsorption equilibrium state was reached within 24 hours, and the adsorbed amount of Pb increased, but the adsorption efficiency over the initial concentration of 198 mg/l decreased, with increasing the initial concentration of Pb. And the adsorption constant, 1/n was obtained 0.9584 by Freundlich isotherm equation. Regardless of the initial concentration of Pb. the adsorbed amount of Pb as well as the adsorption efficiency were increased with increasing pH values and converged to a certain constant value above 8 of pH values. And also the adsorbed amount of Pb increased with the mixing ratio, but its efficiency increased with the mixing ratio up to 8 and then showed the decreasing tendency above that.

Characteristics of Phosphorus Adsorption of Acidic, Calcareous, and Plastic Film House Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.789-794
    • /
    • 2016
  • Continuous excessive application of phosphorus (P) fertilizer and manure in plastic film house soils can lead to an accumulation of P in soils. The understanding of P sorption by soils is important for fertilizer management. In this study, 9 samples were collected for acidic and calcareous soils as non-cultivated soil and plastic film house soils as cultivated soil Phosphorus sorption data of acidic soils fit the Langmuir equations, Freundlich equations in calcareous and plastic film house soils. In calcareous and plastic film house soils, the slope of isotherm adsorption changed abruptly, which could be caused P precipitation with $CaCO_3$. The calculated Langmuir adsorption maximum ($S_{max}$) varied from 217 to 1,250, 139 to 1,429, and $714mg\;kg^{-1}$ for acidic soils, calcareous soils, and plastic film house soils with low available phosphate concentration, respectively. From this result, maximum P adsorption by the Langmuir equation could be regarded as threshold of P concentration to induce the phosphate precipitation in soil. Phosphate-sorption values estimated from one-point isotherm for acidic and calcareous soils as non-cultivated soils were comparable with the $S_{max}$ values calculated from the Langmuir isotherm.

A Study on Adsorption of Anionic Surfactants with Nonionic Resins (비이온성 수지를 이용한 음이온 계면활성제의 흡착에 관한 연구)

  • Seo, Yang-Gon;Ahn, Jou-Hyeon;Heo, Byeong-Young
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.369-376
    • /
    • 1996
  • The adsorption of the anionic surfactants, sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) anion surfactants form aqueous solutions with nonionic resins, Amberlite XAD-2, XAD-4 and XAD-7 at temperatures in 15~45$^{\circ}C$ range was studied. Several adsorption isotherm models were used to fit the experimental data, The best results were obtained with the Redlich-Peterson equation and the Freundlich model provided remarkably good fits. For a particular resin at a particular temperature, SDBS was more extensively adsorbed than SLS. The highest adsorption were obtained with XAD-4 resin and the specific surface area of the resins plays a major role in adsorption of the surfactants. Estimations of the isosteric heat of adsorption were indicative of an exothermic process, and their magnitudes manifested a physisorption process.

  • PDF

Removal of Halocarbonanted Volatile Organic Compounds by Adsorption Technology (흡착법을 이용한 염소계 휘발성 유기화합물의 제거)

  • 김승재;조성용;김태영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Adsorption isotherms of dichloromethane and 1, 1, 2-trichloro-1,2,2-trifluoroethane on an activated carbon pellet, Norit B4, were studied. For these chemicals, Sips equation gave the best fit for the single component adsorption isotherm. The adsorption affinity on activated carbon was greater for dichloromethane than that of 1, 1, 2-trichloro-1,2,2-trifluoroethane. An experimental and theoretical study was made for the adsorption of dichloromethane and 1, 1,2-trichloro-1,2,2-trifluoroethane in a fixed bed. Experimental results were used to examine the effect of operation variables, such as feed concentration, flow rate and bed height. Intraparticle diffusion was able to be explained by surface diffusion mechanism. An adsorption model baked on the linear driving force approximation (LDFA) was found to be applicable to fit the experimental data.

  • PDF

Adsorption and Desorption Characteristics of Fission Molybdenum on Alumina (알루미나에 의한 Fission 몰리브덴의 흡착과 탈착 특성)

  • 조경태;정원명;이종대
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.97-105
    • /
    • 1997
  • Mo-99(Molybdenum) is the only source of Tc-99m(Technetium) which is most frequently used in nuclear medical diagnostics and the demand is on the increase recently. Separation and refining of Mo-99 was investigated by adsorption and desorption on alumina. At pH=0.63, adsorption isotherm of Mo was fitted by Redlich & Peterson equation using the adsorption experimental data. It was found that the pore diffusion model ($D_p=1.4{\times}10^{-6}cm^2/s, K_f/=0.4 cm/s$) agreed well with batch adsorption experimental data. RTDs(Residence Time Distributions ) were measured and axial dispersion coefficients were obtained in the fixed bed absorber according to the changes of the flow rate using 0.05% -NaCl. From the adsorption experimental data, it was shown that the behavior of breakthroughs depended on flow rate. Mo recovery yield was increased as adsorption flow rate was increased and desorption flow rate was decreased.

  • PDF