• Title/Summary/Keyword: Adsorption equilibrium

Search Result 679, Processing Time 0.024 seconds

Moringa Oleifera, A Biosorbent for Resorcinol Adsorption-Isotherm and Kinetic Studies

  • Kalavathy, M. Helen;Swaroop, G.;Padmini, E.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • The adsorption of phenolic compound resorcinol on activated carbons prepared from Moringa oleifera (Drumstick bark) has been investigated. Activated carbon was prepared by impregnating Moringa oleifera with 50% phosphoric acid in the ratio of 1:1 and 1:2(w/w), designated as MOAC1 and MOAC2. Equilibrium and isotherm studies were carried out. The influences of variables such as contact time, initial concentration of resorcinol, carbon dosage in the solution on percentage adsorption and adsorption capacity of the bark have been analysed. The equilibration time was found to be 4 h. Kinetics of resorcinol onto activated carbons was checked for pseudo first order and pseudo second order model. It was found that the adsorption of resorcinol follows pseudo second order kinetics for both MOAC1 and MOAC2. The isotherm data were correlated with isotherm models, namely Langmuir and Freundlich. Adsorption isotherms were satisfactorily fitted by both the Langmuir and Freundlich model for MOAC1 and MOAC2.

Adsorption of U(VI), Mg(II), Ho(III) Ions on the 1-Aza-18-Crown-6-Styrene-DVB Resin (1-Aza-18-Crown-6-Styrene-DVB 수지에 의한 U(VI), Mg(II), Ho(III) 이온들의 흡착)

  • Kim, Hae-Jin;Kim, Sun-Hwa
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.49-56
    • /
    • 2007
  • The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of metal ions by 1-aza-18-crown-6-styrene-DVB(divinylbenzene) resin(resin) adsorbent were investigated. The metal ions were showed fast adsorption on the resins in over pH 3. The equilibrium time for adsorption of metallic ions was about two hours and the adsorption selectivity determined in methanol was in increasing order $UO_2^{2+}>Mg^{2+}>Ho^{3+}$ ions. The adsorption was in the order of 1%, 2% and 4% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Adsorption of Metal Ions on Cryptand Synthetic Resin (Cryptand 합성수지에 위한 금속 이온들의 흡착)

  • Lee Chi-Young;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.38-44
    • /
    • 2005
  • Cryptand resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of $1\%,\;2\%,\;5\%\;and\;10\%$ by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium$(UO_2^{2+})$ ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO_2^{2+})$ > zinc$(Zn^{2+})$ > samarium$(Sm^{3+})$ ion. The adsorption was in order of $1\%>2\%>5\%>10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash (석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성)

  • 감상규;이동환;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

Characteristics of Chlorinated VOCs Adsorption over Thermally Treated Silica Gel (열처리 실리카겔의 염소계 휘발성 유기화합물 흡착특성 연구)

  • Nam, Kyung Soo;Kwon, Sang Soog;Yoo, Kyung Seun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.245-250
    • /
    • 2007
  • Adsorption characteristics of 1,2-dichlorobenzene on the surface of heat treated silica gel were determined by the moment analysis. The heat treatment of the silica gel was performed at temperatures of 150, 500, and $800^{\circ}C$ and pulse-response of 1,2-dichlorobenzene was measured in a gas chromatograph equipped with thermal conductivity detector (TCD) using the packed column. Equilibrium adsorption constants and isosteric heat of adsorption were recorded the highest value at $500^{\circ}C$. This might be due to the increase of interaction between silica surface and 1,2-dichlorobenzene as the decrease of OH concentration and moisture by increase of heating temperature. Axial dispersion coefficient calculated by the moment method was about $0.046{\times}10^{-4}{\sim}1.033{\times}10^{-4}m^2/sec$ and pore diffusivity of heat treated silica gel at $500^{\circ}C$ measured the lowest value. Because heat treating at $800^{\circ}C$ caused the specific surface area to reduce, equilibrium adsorption constants and isosteric heat of adsorption were decreased.

Adsorption of MX (3-chloro-4 (dichloromethyl)-5-hydroxy-2-(5H)-furanone) on amphiphilic mesoporous silica in aqueous solution (양쪽성 메조 포러스 실리카에 의한 수용액 속의 MX의 흡착)

  • Yoo, Eun-Ah;Chung, Kang-Sup
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.94-104
    • /
    • 2011
  • Mesoporous silica was synthesized in a water solvent and in an ethanol solvent with the non and cationic cetyltrimethyl ammonium chloride (CTAC) by varying the amount of the amphiphilic acrylic urethane oligomer (AAU) and the pH of the solution. The adsorption of the MX (3-chloro-4 (dichloromethyl)-5-hydroxy-2-(5H)-furanone) in drinking water was studied using the synthesized mesoporous silica as an adsorbent. The most appropriate silica was synthesized in acidic conditions in the water solvent and in alkali conditions in the ethanol solvent. The average pore sizes of the synthesized mesosilica were 3 nm and more. The mesoporous silica synthesized by the addition of the AAU oligomer showed excellent adsorption characteristics. With respect to the co-surfactant, the best adsorption characteristics were obtained when the P64,a non-ionic surfactant with a high molecular weight, was used to synthesize the silica than when other co-surfactants were used. The adsorption rate decreased as the MX concentration in the water increased. Different adsorption equilibrium conditions were reached depending on the adsorbate MX concentration in the adsorbent and the solution. It was seen that perfect adsorption does not occur due to such equilibrium conditions.

Adsorption Properties of SO$_2$ Using Fibrous Strong-base Anionic ion Exchange Scrubber (강염기성 음이온교환 섬유 스크러버를 이용한 SO$_2$의 흡착특성)

  • 황택성;최재은;강경석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.661-669
    • /
    • 2002
  • The purpose of this research is to absorb and remove sulfur dioxide existing in the air by using ion exchange non-woven fabric. So we found out very appropriate condition of anionic exchange fabric scrubber by measuring amount of SO$_2$ adsorption under the atmosphere that concentration, velocity, and humidity was 100∼200 ppm, 0.6∼1.0 m/sec, and 30∼90 RH%, respectively. Ion exchange capacity of ion exchanger showed the maximum value, 3.75 meq/g at pH 4, and adsorption equilibrium time was the maximum value, 30 h when gas velocity was 0.6 m/sec, moreover, at 80$\^{C}$, adsorption equilibrium time tended to decrease more than 10 h. When concentration was 200 ppm, while reaction speed between SO$_2$ and ligand of fibrous ion exchanger was getting faster, adsorption break point had a tendency to get faster as well. In addition, when relative humidity in the scrubber was 90%, adsorption efficiency was 7.6%/h that seemed to be 30% higher than 4.6%/h coming from the condition that relative humidity had been 30%, and it was totally absorbed under 5 wt% NaOH solution in 5 minutes.

Photocatalysis and Adsorption of Reactive Black 5(RB5) by HAP/TiO2 Media (HAP/TiO2 여재를 이용한 Reactive Black 5(RB5)의 광촉매 반응과 흡착)

  • Chun, Sukyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.31-37
    • /
    • 2011
  • This study investigated on the adsorption and photocatalysis of Reactive Black 5(RB5) by the hydroxyapatite(HAP)/Titanium dioxide($TiO_{2}$) media. The adsorption of RB5 on $TiO_{2}$, HAP and $TiO_{2}$/HAP was investigated during a series of batch adsorption experiments. The amounts adsorbed at equilibrium were measured. Langmuir and Freundlich isotherm models were tested for their applicability. The result of equilibrium studies of $TiO_{2}$, HAP and $TiO_{2}$/HAP adsorbent were found to follow Langmuir isotherm model. The adsorbed amounts(Qmax) were found to be 5.28mg/g on single $TiO_{2}$, 12.45mg/g on single HAP and 9.03mg/g on $TiO_{2}$/HAP, respectively. The experimental data were analysed using the pseudo-first-order adsorption and photocatalysis kinetic models. According to these models, RB5 degradation by $TiO_{2}$/HAP was affected by interaction effect of photocatalysis and adsorption.

Adsorption of Trace Metals on the Natural Amorphous Iron Oxyhydroxide from the Taebag Coal Mine Area (태백 탄전 지대의 비정질 철 수산화물에 대한 희귀원소의 흡착)

  • Yu, Jae-Young;Park, In-Kyu
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • To determine the apparent equilibrium constants, K$_{ad,app}$, for the adsorption reactions of trace metals on amorphous iron oxyhydroxide (AIO) in the Taebag coal mine area, time-adsorption and pH-adsorption experiments were performed for a selected bottom sediment mainly comprised of AIO from the study area. The results from the adsorption experiments indicate that most of the trace metals, except Pb, achieve equilibrium states with AIO and thus, the calculated K$_{ad,app}$ may represent the true apparent equilibrium constants. K$_{ad,app}$ and the stoichiometric coefficients of proton, x, of the adsorption reactions between the trace metals and AIO were respectively calculated from the intercepts and slopes of the regression lines of log($\Gamma$/ [M]$_{aq}$)against pH provided by pH-adsorption experiments. The calculated K$_{ad,app}$ this study has the values of the range from 10$^{-4.5}$ to 10$^{2.75}$ , which is much different from the reported values by other investigators for simple experimental systems. K$_{ad,app}$ of this study is more or less close but not exactly pertinent to the estimated values for the other natural systems. It indicates that K$_{ad,app}$ for the adsorption reactions in the aquatic system in the study area is unique and thus should be determined befor the adsorption modelling. The calculated x of this study has the values of the range from -0.3 to 0.7, which is also much different from what most geochemists generally accept. The discrepancy in x may be due to the competition among different kinds of ionic species on the adsorption site or simulataneous occurrence of different kinds of adsorption reactions. The results from this study should help construct an appropriate adsorption model for the aquatic systems polluted by the coal mine drainage in the Taebag area. With the constructed model, one can describe the concentration variations of trace metals due to the adsorption in the system, which is an essential part of the investigation on the water quality affected by coal mine drainage in the Taebag coal field.

  • PDF

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.