• 제목/요약/키워드: Adsorption effect

검색결과 1,259건 처리시간 0.023초

Effect of vacuum regeneration of activated carbon on volatile organic compound adsorption

  • Pak, Seo-Hyun;Jeon, Yong-Woo
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.169-174
    • /
    • 2017
  • Vacuum swing adsorption (VSA) is a promising treatment method for volatile organic compounds (VOCs). This study focuses on a VSA process for regenerating activated carbon spent with VOCs, and then investigates its adsorption capacities. Toluene was selected as the test VOC molecule, and the VSA regeneration experiments results were compared to the thermal swing adsorption process. Cyclic adsorption-desorption experiments were performed using a lab-scale apparatus with commercial activated carbon (Samchully Co.). The VSA regeneration was performed in air (0.5 L/min) at 363.15 K and 13,332 Pa. The comparative results depicted that in terms of VSA regeneration, it was found that after the fifth regeneration, about a 90% regeneration ratio was maintained. These experiments thus confirm that the VSA regeneration process has good recovery while operating at low temperatures (363.15 K) and 13,332 Pa.

백수의 수질이 양이온성 PAM의 흡착에 미치는 영향 (Effect of White Water Quality on the Adsorption of Cationic PAM on Fibers)

  • 이지영;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제37권1호
    • /
    • pp.1-9
    • /
    • 2005
  • Many factors which affect the adsorption of cationic polymers on fibers and fines have been investigated by many researchers that include contact time, pH, collision frequency, properties of cationic polymers and adsorbent, etc. But the effect of white water quality on the adsorption of cationic polymer have not been examined throughly. In this study, the adsorption of cationic PAM was analyzed as a function of white water quality. The adsorption of the cationic PAM was analyzed by two analysis methods, Kjeldahl nitrogen content measurement and electrokinetic measurements. When the distilled water was used, adsorbed amount of C-PAM and zeta-potential of fibers increased as a function of the addition of C-PAM. When closure level increased, nitrogen content of fibers increased indicating that the cationic PAM was adsorbed. Zeta-potential of fibers, however, showed no significant change with the increased addition of C-PAM. This showed that adsorption of C-PAM was not reflected by zeta-potential of fibers due to the deteriorated efficiency of C-PAM by the anionic contaminants in white water.

탄소함량이 높은 플라이애쉬를 함유한 시멘트 페이스트의 질소산화물 흡착 성능 (Nitrogen Oxides Adsorbing Capacity of High Carbon Fly Ash Containing Cementitious Materials)

  • 이보연
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.37-42
    • /
    • 2018
  • The use of fly ash in construction materials is increasing worldwide due the various advantages of using it, such as to produce durable concrete, or to use less cement and thus lower carbon dioxide emissions. The quality of fly ash is often determined by loss on ignition value (LOI), where an upper limit of LOI is set in each country for quality control purpose. However, due to many reasons, production of high LOI fly ash is increasing that cannot be utilized in concrete, ending up in landfill. In this study, the effect of fly ash use in cementitious materials on nitrogen oxides adsorption is examined. In particular, the effect of using high LOI, and thus high carbon content fly ash on nitrogen oxides adsorption is investigated. The results suggest that the higher carbon content fly ash is related to higher nitrogen dioxide adsorption, although normal fly ash was also more effective in nitrogen dioxide adsorption than ordinary portland cement. Also, higher replacement rate of up to 40% of fly ash is beneficial for nitrogen dioxide adsorption. These results demonstrate that high carbon fly ash can be used as construction materials in an environmentally friendly way where strength requirement is low and where nitrogen oxides emissions are high.

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.

Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater

  • Shafiquzzam, Md.;Hasan, Md. Mahmudul;Nakajima, Jun
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2013
  • In this study, an innovative media, iron mixed ceramic pellet (IMCP) has been developed for arsenic (As) removal from groundwater. A porous, solid-phase IMCP (2-3 mm) was manufactured by combining clay soil, rice bran, and Fe(0) powder at $600^{\circ}C$. Both the As(III) and As(V) adsorption characteristics of IMCP were studied in several batch experiments. Structural analysis of the IMCP was conducted using X-ray absorption fine structure (XAFS) analysis to understand the mechanism of As removal. The adsorption of As was found to be dependent on pH, and exhibited strong adsorption of both As(III) and As(V) at pH 5-7. The adsorption process was described to follow a pseudo-second-order reaction, and the adsorption rate of As(V) was greater than that of As(III). The adsorption data were fit well with both Freundlich and Langmuir isotherm models. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Phosphorus in the water had an adverse effect on both As(III) and As(V) adsorption. Scanning electron microscopy results revealed that iron(III) oxides/hydroxides are aggregated on the surface of IMCP. XAFS analysis showed a partial oxidation of As(III) and adsorption of As(V) onto the iron oxide in the IMCP.

흡착식 냉동기의 흡착탑에서 열 및 물질전달에 관한 수치적 연구 (A Numerical Study for the Heat and Mass Transfer in Silica gel/Water Adsorption Chiller's Adsorber)

  • 권오경;윤재호;김종하;김용찬;주영주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.341-346
    • /
    • 2005
  • Nowadays, adsorption chillers have been receiving considerable attentions as they are energy-saving and environmental1y benign systems. A Fin & tube type heat exchanger in which adsorption/desorption take place is required more compact size. The adsorption chiller is expected to have high energy-efficiency in utilizing the waste heat exhausted from a process. The objectives of this paper are to investigate the effect of fin pitch of fin & tube on the adsorption performance and to develop an optimal design fin & tube heat exchanger in the silica gel/water adsorption chiller. Previous study concluded that optimal particle size selected 0.5mm, type HO silica gel, and fundamental heat transfer & mass transfer experiments carried out. From the numerical results, the adsorption rate for the fin pitch 2.5mm is the highest than that for the fin pitch 5mm, 7.5mm and 10mm. Also cooling water & hot water temperature affect the adsorption rate.

  • PDF

Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption

  • Oktavian, Rama;Poerwadi, Bambang;Pardede, Kristian;Aulia, Zuh Rotul
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.260-268
    • /
    • 2021
  • Adsorption is the most promising technology used to adsorb CO2 to reduce its concentration in the atmosphere due to its functional effectiveness. Various porous materials have been extensively synthesized to boost CO2 adsorption efficiency, for example, zeolite. Here, we report the synthesis process of zeolite adsorbent impregnated with amine, combining the benefit of these two substances. We compared conventional heating with microwave-assisted heating by varying concentrations of monoethanolamine in methanol (10% v/v and 40% v/v) as a liquid solution. The results showed that monoethanolamine impregnation helps significantly increase adsorption capacity, where adsorption occurs as a physisorption and not as chemisorption due to the adsorbent's steric hindrance effect. The highest adsorption capacity of 0.3649 mmol CO2 / gram adsorbent was reached by microwave exposure for 10 minutes. This work also reveals that a decrease in CO2 adsorption capacity was observed at a longer exposure period, and it reached a constant 40-minute adsorption rate. Impregnating activated zeolite with 40% monoethanolamine for 10 minutes in addition to microwave exposure (0.8973 mmol CO2 / gram adsorbent) is the maximum adsorption ability achieved.

Influence of Ca-Na-Cl physicochemical solution properties on the adsorption of Se(-II) onto granite and MX-80 bentonite

  • Joshua Racette ;Andrew Walker ;Shinya Nagasaki ;Tianxiao Tammy Yang ;Takumi Saito ;Peter Vilks
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3831-3843
    • /
    • 2023
  • The adsorption behaviour of Se(-II) onto granite and MX-80 bentonite in Ca-Na-Cl solutions has been studied utilizing adsorption experiments and surface complexation modelling. Adsorption kinetic experiments allude to steady-state adsorption periods after 7 days for granite and 14 days for MX-80 bentonite. Batch adsorption experiments were carried out to determine the influence that the physicochemical solution properties would have on Se(-II) adsorption behaviour. Adsorption of Se(-II) onto granite and MX-80 bentonite follows the trend of anionic adsorption, with a decrease in Rd values as the solution pH increased. There is also an ionic strength influence on the adsorption of Se(-II) onto granite with a decrease in the Rd value as the ionic strength increased. This effect is not found when observing Se(-II) adsorption onto MX-80 bentonite. Final experiments with a representative groundwater, determined that the adsorption of Se(-II) onto granite and MX-80 bentonite returned Rd values of (1.80 ± 0.10) m3·kg-1 and (0.47 ± 0.38) m3·kg-1, respectively. In support of the experiments, a surface complexation modelling approach has been employed to simulate the adsorption of Se(-II) onto granite and MX-80 bentonite, where it was determined that two different surface complexes, ≡S_Se- and ≡SOH2+_H2 were capable of simulating Se(-II) adsorption behaviour.

Additional Effect of Zeolite Based on Bactericidal Activated Carbon Spheres with Enhanced Adsorption Effect and Higher Ignition Temperature

  • Zhu, Lei;Ye, Shu;Asghar, Ali;Bang, Seong-Ho;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, the fabrication of zeolite combined activated carbon spherical samples was carried out as follows. Briefly, ZSM-5 zeolite and activated carbon were composed as main absorbent materials; by controlling the weight percentage of zeolite and binder materials, a series of spherical samples (AZP 4, 6, 8) were prepared. These spherical samples were characterized by BET, XRD, SEM, EDX, and pressure drop; benzene and iodine adsorption tests, bactericidal effect test, and ignition temperature test were also performed. The adsorption capability was found to depend on the BET surface area; the spherical samples AZP6 with high BET surface area of $1011m^2/g$ not only exhibited excellent removal effects for benzene (24.9%) and iodine (920mg/g) but also a good bactericidal effect. The enhanced ignition temperature may be attributed to the homogeneous dispersion conditions and the proper weight percentage ratio between zeolite and activated carbon.

자초염료의 염색성 증진을 위한 방안(I) (A Study Improvement of Adsorption of Gromwell)

  • 최인려;최정임
    • 한국의상디자인학회지
    • /
    • 제3권2호
    • /
    • pp.35-50
    • /
    • 2001
  • Cotton, Silk, Acrylic fabrics을 chitosan으로 처리하여 천연염료 자초로 Al, Sn, Cu등의 매염제를 이용한 염색을 하였더니 다음과 같은 결과가 나왔다. chitosan 처리포가 미처리포 보다 염색성이 모두 월등하게 우수했다. 또한 Al, Sn, Cu 등의 단독매염제의 사용시 보다 chiotosan과 함께 사용했을 때가 더욱 우수했다. 특히 아크릴포의 경우 무매염, Sn, Al 매염의 사용시 염색효과가 거의 발현되지 않았으나 chitosan 처리포의 경우 염색효과가 나타났으며, chiotosan 처리포를 중금속매염제와 함께 사용했을 때는 우수한 염색성이 발현되었다. 위 3종 중금속매염제 중 Cu로 chiotosan 처리포를 실험했을 때가 염색성이 가장 우수했다.

  • PDF