• 제목/요약/키워드: Adsorption and dissociation

검색결과 44건 처리시간 0.024초

Coverage Dependent Adsorption and Electronic Structure of Threonine on Ge (100) Surface

  • 이명진;김기정;이한길
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.212-212
    • /
    • 2012
  • The Coverage dependent attachment of multifunctional groups included in threonine molecules adsorbed to Ge (100)$-2{\times}1$ surface was investigated using core-level photoemission spectroscopy (CLPES) and density functional theory (DFT) calculations. The core-level spectra at a low coverage indicated that the both carboxyl and amine groups participated in the bonding with the Ge (100) surface by "O-H dissociated and N-dative bonded structure". However, at high coverage level, additional adsorption geometry of "O-H dissociation bonded structure" appeared possibly to minimize the steric hindrance between adsorbed molecules. Moreover, the C 1s, N 1s, and O 1s core level spectra confirmed that the carboxyl oxygen is more competitive against the hydroxymethyl oxygen in the adsorption reaction. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. Conclusively, we investigate in threonine on Ge (100) surface system that the "O-H dissociated-N dative bonded structure" and the "O-H dissociation bonded structure" are preferred at low coverage and high coverage.

  • PDF

Adsorption Configuration of Serine on Ge(100): Competition between the Hydroxymethyl and Carboxyl groups of Serine During the Adsorption Reaction

  • 김예원;양세나;이한길
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2011
  • We investigated the adsorption structures of serine on a Ge(100) surface by core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. The core-level C 1s, N 1s, and O 1s CLPES spectra confirmed that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction, thereby favoring formation of the "O-H dissociated-N dative bonded" and "O-H dissociation bonded" structures at 0.30 ML and 0.60 ML, respectively. The experimental results were corroborated theoretically by calculating the reaction pathways leading to the two adsorption geometries. The reaction pathways indicated that the "O-H dissociated-N dative bonded structure" is the major product of serine adsorption on Ge(100) due to comparably stable adsorption energy.

  • PDF

First-principles study of dissociation processes of O2 molecular on the Al (111) surface

  • Sun, Shiyang;Xu, Pingping;Ren, Yuan;Tan, Xin;Li, Geyang
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1528-1533
    • /
    • 2018
  • The trajectories of adsorption and dissociation process of $O_2$ on the Al (111) surface were studied by the spinpolarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of $O_2$ molecule at different initial positions. When vertically approaches to the Al surface, the $O_2$ molecule tends to rotate, and the activation energy is 0.66eV. If $O_2$ molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the $O_2$ molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • 조상준;박동호;허도성
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권8호
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Thr Adsorption and Decomposition of NO on a Stepped Pt(111) Surface

  • Lee, S. B.;Kang, D. H.;Park, C. Y.;Kwak, H. T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권2호
    • /
    • pp.157-163
    • /
    • 1995
  • The adsorption and decomposition of NO on a stepped Pt(111) surface have been studied using thermal desorption spectroscopy and Auger electron spectroscopy. NO adsorbs molecularly in two different states of the terrace and the step, which are distinguishable in thermal desorption spectra. NO dissociates via a bent species at the step sites on the basis of vibrational spectrum data reported previously. The dissociation of NO is an activation process : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorption temperature is explained by a process controlled by diffusion of the dissociated atomic nitrogen from the step to the terrace of the surface. In addition to NO and N2, the desorption peak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of NO and N adsorbed on the surface.

Dissociative adsorption structure of guanine on Ge(100)

  • Youn, Young-Sang;Kim, Do Hwan;Lee, Hye Jin;Kim, Sehun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.109.1-109.1
    • /
    • 2015
  • Understanding the reaction mechanisms and structures underlying the adsorption of biomolecules on semiconductors is important for functionalizing semiconductor surfaces for various bioapplications. Herein, we describe the characteristic behavior of a primary nucleobase adsorbed on the semiconductor Ge(100). The adsorption configuration of guanine, a primary nucleobase found in DNA and RNA, on the semiconductor Ge(100) at an atomic level was investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. When adsorbed on Ge(100) at room temperature, guanine appears dark in STM images, indicating that the adsorption of guanine on Ge(100) occurs through N-H dissociation. In addition, DFT calculations revealed that "N(1)-H dissociation through an O dative bonded structure" is the most favorable adsorption configuration of all the possible ones. We anticipate that the characterization of guanine adsorbed on Ge(100) will contribute to the development of semiconductor-based biodevices.

  • PDF

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

State-selective Dissociation of Water Molecules on MgO Films Using LT-STM

  • Shin, Hyung-Joon;Jung, J.;Motobayashi, K.;Kim, Y.;Kawai, M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.112-112
    • /
    • 2011
  • The interaction of water molecules with solid surfaces has been a subject of considerable interests, due to its importance in the fields from atmospheric and environmental phenomena to biology, catalysis and electrochemistry [1,2]. Among various kinds of surfaces, a lot of theoretical and experimental studies have been performed regarding water on MgO(100), however, to date, there has been no direct observation of water molecules on MgO by scanning tunneling microscope (STM) as compared with those on metal surface. Here, we will present the direct observation and manipulation of single water molecules on ultrathin MgO(100) films using low-temperature scanning tunneling microscope (LT-STM) [3]. Our results rationalize the previous theoretical predictions of isolated water molecules on MgO including the optimum adsorption sites and non-dissociative adsorption of water. Moreover, we were able to dissociate a water molecule by exciting the vibrational mode of water, which is unattainable on metal surfaces. The enhanced residual time of tunneling electrons in molecules on the insulating film is responsible for this unique pathway toward dissociation of water.

  • PDF

Studies of the Organic Molecules Dissociative Surface Ionization in the Mass-Spectrometric Surface Ionization Method

  • Ilkhomjan Saydumarov;Dilshadbek Usmanov
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2024
  • An improved voltage modulation method (VMM) was used to control the heat release and adsorption properties of the adsorbent. In this work, the voltage and flux modulation methods were considered under unified experimental conditions of dissociative surface ionization (SI) of polyatomic organic molecules, the criteria were found when under VMM conditions the current relaxation of SI carries information about the kinetic properties of thermal desorption of ionizable dissociation particles arriving on the surface of polyatomic molecules. Conditions were found under which the relaxation of the ionic current in the flux modulation method is determined by the kinetics of the heterogeneous dissociation reaction of the original polyatomic molecules. The values of the thermal desorption rate constant K+ and the activation energy E+ obtained with VMM for desorption of (CH3)2NCH+2 ions with m/z 58 by adsorption of imipramine and amitriptyline molecules agree well with each other and with the results for the desorption of the same ions by adsorption of other molecules. This confirms one of the basic conditions for the equilibrium process SI - the a degree (β coefficient) of the same particles SI on the same emitter surface is the same and does not depend on the way these particles are formed on the emitter surface.