• Title/Summary/Keyword: Adsorbent

Search Result 1,028, Processing Time 0.024 seconds

Co2+ Adsorption Characteristics of Al2O3-TiO2 Composite Oxide Prepared by Hydrolysis of Metal Alkoxide (금속 알콕사이드의 가수분해법으로 제조한 Al2O3-TiO2 복합옥사이드의 Co2+ 흡착 특성에 관한 연구)

  • Ryu, Jae-Chun;Yang, Hyun-Soo;Kim, Yu-Hwan;Sung, Ki-Woung;Kim, Yong-Ik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1192-1203
    • /
    • 1996
  • $Al_2O_3-TiO_2$ composite oxide adsorbents which could be applied in high-temperature water were prepared by hydrolysis of aluminum and titanium alkoxide. The prepared adsorbents were calcined at $600{\sim}1400^{\circ}C$ and in order to investigate the various properties - the transition of crystals, thermal properties, and specific surface area, X-ray diffractometry, thermal analysis, FT-IR, SEM and BET method were employed. And the $Co^{2+}$ adsorption characteristics of these adsorbents in high-temperature water were investigated by batch adsorption experiment in a stirred autoclave. Since the adsorption of $Co^{2+}$ on the $Al_2O_3-TiO_2$ adsorbents was irreversible endothermic in the temperature range of $150{\sim}250^{\circ}C$, the standard enthalpy changes of 26, 43, and 80 mol% of $TiO_2$ on $Al_2O_3$ were in the range of $16.5{\sim}26.0kJ{\cdot}mol^{-1}$. The adsorbent of 26 mol% of $TiO_2$ on $Al_2O_3$ which was calcined at $600^{\circ}C$ for 2 hours showed the adsorption amount of $0.1674meq{\cdot}g^{-1}$ in the high temperature water at $250^{\circ}C$.

  • PDF

Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju (서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구)

  • Ryoo, Jae-Youn;Kim, Deug-Soo;Chae, Soo-Cheon;Nam, Tu-Cheon;Choi, Yang-Seock
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

A Study on the Adsorptive Removal of Heavy Metals Using Inflated Vermiculites (팽창질석을 이용한 중금속 흡착제거에 관한 연구)

  • Lee, Junki;Koh, Taehoon;Kim, Sukyung;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.61-68
    • /
    • 2009
  • The main objective of this study was to examine the removal of heavy metals from water by inflated vermiculites. The component of vermiculites was analyzed by XRF, and the concentration of metal ion was measured by ICP-AES. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for heavy metals in aqueous solutions. As a result, solution pH values of tests with the inflated vermiculites generally increased and then stabilized. Equilibrium pHs were generally established within 5 hrs. In addition, removal rates of inflated vermiculites were tested at the initial concentration of 3 mg/L. As a result, at equilibrium concentration, except for chromium (36.23%), Most of the heavy metals were effectively removed (96.08~98.54%). Finally, sorption data were correlated with both Langmuir and Freundlich isotherms. The Qmax obtained from Langmuir isotherm were determined to Pb $725.4mg\;kg^{-1}$, Cd $568.8mg\;kg^{-1}$, Zn $540.2mg\;kg^{-1}$, Cu $457.2mg\;kg^{-1}$ Cr $0.9mg\;kg^{-1}$ respectively. The results of the study indicate that inflated vermiculites can be properly used as an adsorbent for various heavy metals because of its outstanding removal rate.

  • PDF

The Effect of Residual Water on the Adsorption Process of Carbon Tetrachloride by Activated Carbon Pellet (활성탄에 의한 사염화탄소 흡착공정에서 잔존수분의 영향)

  • Jeong, Sung Jun;Lee, Dae Lo;Kim, Tae Young;Kim, Jin Hwan;Kim, Seung Jai;Cho, Sung Young
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.694-702
    • /
    • 2002
  • Activated carbons have been used as adsorbents in various industrial application, such as solvent recovery, gas separation, deodorization, and catalysts. In this study, the effects of residual water on the activated carbon adsorbent surface on the adsorption capacity of $CCl_4$ were investigated. Adsorption behavior in a fixed bed was studied in terms of feed concentration, flow rate, breakthrough curve and adsorption capacity for $CCl_4$. Desorption characteristics of residual water on activated carbon were also studied. The water contents of the activated carbon were varied in the range of 0-20%(w/w) and all experiments were performed at 298.15 K. The adsorption equilibrium data $CCl_4$ on the activated carbon were well expressed by Langmuir isotherm. The adsorption capacity of $CCl_4$ decreased with increasing residual water content. Desorption of residual water in activated carbon decreased expotentially with $CCl_4$ adsorption. The obtained breakthrough curves using LDF(linear driving force) model represented our experimental data.

Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite (제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성)

  • Lee, Ji-In;Park, Jong-Ho;Beum, Hee-Tae;Yi, Kwang-Bok;Ko, Chang-Hyun;Park, Sung Youl;Lee, Yong-taek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.768-775
    • /
    • 2010
  • Adsorption dynamics of ethane/ethylene mixture gas and desorption dynamics during the displacement desorption with propane as a desorbent in the column filled with faujasite adsorbent were investigated experimentally and theoretically. The simulation that adopted heat and mass balance and an ideal adsorbed solution theory (IAST) for the multicomponent adsorption equilibrium well predicted the experimental breakthrough curves of the adsorption and desorption. At the adsorption breakthrough experiments, roll-ups of ethane increased as the adsorption pressure increased and the adsorption temperature decreased. During the displacement desorption with propane in the column saturated with ethane/ethylene mixture gas, almost 100% of ethylene was obtained for a certain time interval. The adsorption strength of the desorbent greatly affected the adsorption and re-adsorption dynamics of ethylene. The re-adsorption capacity for ethylene has been greatly reduced when iso-propane, which is stronger desorbent than propane, was used as desorbent. It was found from the simulation that the performance of the displacement desorption process would be superior when the ratio of ${(q_s{\times}b)}_{C_2H_4}/{(q_s{\times}b)}_{C_3H_s}$ was 0.83, that is, the adsorption strengths of ethylene and the desorbent were similar.

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel (폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.798-806
    • /
    • 2017
  • A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

Spectrophotometric Determination of Traces of Phosphorus in Semiconductor-grade Trichlorosilane (반도체급 삼염화실란 중의 극미량 인의 분광광도법적 정량)

  • Dong Kwon Kim;Myoung Wan Han;Hee Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.255-260
    • /
    • 1992
  • A procedure for spectrophotometric determination of traces of phosphorus(P) in high-purity trichlorosilane(TCS) is proposed using an adsorptive separation. $PCl_3$, which is a dominant P impurity within TCS, is first oxidized by oxygen to a stable form as $POCl_3$. $AlCl_3$ is selected as an adsorbent which forms a thermally stable complex with $POCl_3$ in TCS and can be well dissolved in aqueous ethanol solution. The proposed adsorptive separation method is free from the formation of silica gel and gas bubbles during the colorimetric analysis of TCS. The method reveals that the P concentration in a semiconductor-grade TCS is 5.32 ${\mi}g/l$ within the standard deviation of ${\pm}$ 17%. On the other hand, the P concentration of the purified TCS which is separated from the $AlCl_3$${\cdot}$$POCl_3$ complex is reduced to be less than 0.15 ${\mi}g/l$, showing the efficient applicability of $AlCl_3$ to the wet chemical analysis. The proposed method is also tested to verify the effectiveness of other well-known adsorbents.

  • PDF

Methodology for Quantitative Monitoring of Agricultural Worker Exposure to Pesticides (농작업자에 대한 농약 노출의 정량적 측정 방법)

  • Kim, Eun-Hye;Lee, Hye-Ri;Choi, Hoon;Moon, Joon-Kwan;Hong, Soon-Sung;Jeong, Mi-Hye;Park, Kyung-Hun;Lee, Hyo-Min;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.507-528
    • /
    • 2011
  • Agricultural workers who mix/loads and spray pesticide in fields expose to pesticide through dermal and inhalation routes. In such situation, exposed amount should be measured quantitatively for reasonable risk assessment. Patch, gloves, socks and mask will be good materials for monitoring for dermal exposure while personal air monitor equipped with solid adsorbent and air pump will be a tool for inhalation exposure. For extrapolation of absorbed amount in dermal exposure matrices and of trapped amount in solid sorbent to total deraml or inhalation exposure, Korean standard body surface area and respiration rate were proposed in substitution of EPA data. Important exposure factors such as clothing and skin penetration ratio of dermal and inhalation exposure were suggested based on Spraying time for exposure monitoring must be long enough that the amount of pesticide to get absorbed/trapped in exposure matrices results in reasonable analytical value. In domestic case for the both of speed sprayer and power spray machine, spraying time of 20~40 minutes (0.1~0.2 ha) will be reasonable per single replicate before extrapolating to 4 hours a day with triplicates experiment.

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.