• Title/Summary/Keyword: Adrenal Gland

Search Result 231, Processing Time 0.018 seconds

A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland in Female Mice

  • Lee, Bo Young;Jo, Jeong Bin;Choi, Donchan;Lee, Sung-Ho;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.257-268
    • /
    • 2021
  • Phthalates and their metabolites are well-known endocrine disrupting chemicals. Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in industry and the exposing possibility to adult is high. In this study, DEHP was treated (133 ㎍/L and 1,330 ㎍/L in drinking water) according to the OECD test guideline 443 to mature female mice and their adrenal gland were examined for histological characteristics and steroidogenic gene expression. The wet weight of the adrenal gland was increased in all administrated groups compared to control. The diameter of zona fasciculata (ZF) was increased by DEHP in both outer ZF and inner ZF but there was no difference in morphology of the cells and arrangements into zona between groups. In addition, the arrangement of extracellular matrix was not different between control and DEHP groups. CYP11B1 was mainly localized at ZF and the intensity was not different between groups. DAX1 was localized in zona glomerulosa (ZG) and ZF, and its expression levels were decreased by DEHP administration. Its level was lower in DEHP133 group than DEHP1330 group. On the other hand, CYP17A1 was localized in ZG of DEHP1330 group. These results suggest that chronic low-dose DEHP exposing may modify the microstructure and function of the adrenal cortical cortex.

Adrenal Crisis after Off-pump Coronary Artery Bypass Surgery (체외순환 없이 시행한 관상동맥 우회로 조성술 후 부신성 위기)

  • 최용선;류상완;홍성범;정명호;김상형;안병희
    • Journal of Chest Surgery
    • /
    • v.37 no.7
    • /
    • pp.601-605
    • /
    • 2004
  • Addisonian crisis, also commonly referred to as adrenal crisis, occurs when the cortisol produced by the adrenal gland is insufficient to meet the body's needs. Pituitary apoplexy usually occurs as hemorrhagic and ischemic necrosis in the presence of a pre-existing pituitary adenoma, and is a rare sequela of cardiovascular surgery. Most pituitary apoplexy that happens in cardiovascular surgery has been known to be related to harmful effects of the cardiopulmonary bypass. The case presented herein illustrates occult pituitary apoplexy that occurred after off-pump coronary artery bypass grafting. In this patient, . the initial signs of addisonian crisis was similar to those of septic shock, and were overlooked. However, once recognized, they were reduced dramatically with standard stress-dose cortisone.

Studies on Secretion of Catecholamines evoked by Panaxadiol in the Isolated Rabbit Adrenal Gland (파낙사디올의 가토적출부신의 카테콜아민 분비작용에 관한 연구)

  • Lim, Dong-Yoon;Park, Kyu-Baik;Kim, Kyu-Hyeong;Choi, Cheol-Hee;Bae, Jae-Woong;Kim, Moo-Won
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.31-42
    • /
    • 1988
  • The effect of Panaxadiol(PD), which is an active component of Korean Ginseng Saponins, on the secretion of catecholamines (CA) from the rabbit adrenal gland and its mode of action were investigated in the present study. $PD(400{\mu}g)$ increased significantly the secretion of CA from the isolated perfused rabbit adrenal gland. PD-induced secretion of CA was reduced markedly by treatment of atropine, CA secretion induced by Ach or PD was potentiated significantly by physostigmine-treatment. Chlorisondamine did inhibit CA secretion of PD or Ach. Perfusion of $PD(400{\mu}g)$ for 30 min enhanced the secretory activity of CA by Ach. Ouabain weakened the secretory response induced by PD but rather enhanced the response by Ach. Adenosine-treatment resulted in marked enhancement of CA secretion by PD or Ach, Pefusion with $Ca^{2+}-free$ Krebs containing EGTA (5 mM) for about 30 min totally blocked secretory effect induced by Ach and also weakened that by PD. From the above experimental results, it is suggested that PD causes secretion of catecholamines from the rabbit adrenal gland by a calcium-dependent exocytotic mechanism. The secretory effect of PD is due to the stimulation of cholinergic muscarinic and nicotinic receptors present in the adrenal gland and partly to a direct action on the chromaffin cell itself.

  • PDF

Green Tea Extract, not Epigallocatechin gallate Inhibits Catecholamine Release From the Rat Adrenal Medulla

  • Park, Hyeon-Gyoon;Lee, Byung-Rai;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • The present study was designed to investigate the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. ill the presence of CUMC6335 (100 $\mu\textrm{g}$/mL) into an adrenal vein for 60 min, CA secretory responses evoked by ACh(5.32 mM), high $K^+$ (56 mM) and Bay-K-8644 (10$\mu$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG (8 $\mu\textrm{g}$/mL) did not affect CA release evoked by ACh, high $K^+$ and Bay-K-8644. CUMC6335 itself did fail to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits greatly CA secretion evoked by stimulation of cholinergic nicotinic receptors as well as by the direct membrane deplarization from the isolated perfused rat adrenal gland. It is felt that this inhibitory effect of CUMC6335 may be due to blocking action of the L-type dihydropyridine calcium channels in the rat adrenal medullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Imaging Findings of Primary Adrenal Leiomyosarcoma: A Case Report (부신의 원발성 평활근육종의 영상 소견: 증례 보고)

  • Hye Ran Yoon;Dong Hee Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.459-464
    • /
    • 2020
  • Leiomyosarcoma is a malignant tumor that typically originates from either the uterus or the retroperitoneum. Furthermore, primary adrenal leiomyosarcoma is an extremely rare condition. Owing to its radiological non-specificity, differentiating leiomyosarcoma from other tumor types in the adrenal gland is difficult. We report the imaging findings of a primary adrenal leiomyosarcoma in a patient who presented with left upper quadrant abdominal pain, which increased by more than 1 cm in diameter in two years. Primary adrenal leiomyosarcoma was diagnosed considering the subsequent surgical and histopathologic findings.

Effect of Doxorubicin on Catecholamine Release in the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Song-Hoon;Seoh, Yoo-Seung;Lee, Eun-Sook;Kim, Il-Hwan;Jo, Seong-Ho;Hong, Soon-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.215-223
    • /
    • 2002
  • The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX $(10^{-7}{\sim}10^{-6}\;M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M).$ However, lower dose of DX did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M),$ but its higher doses depressed time-dependently CA secretion evoked by high $K^+.$ DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX $(3{\times}10^{-7}\;M),$ CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were time-dependently inhibited. Furthermore, daunorubicin $(3{\times}10^{-7}\;M),$ given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high $K^+,$ DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high $K^+,$ and higher doses of DX reduced time-dependently CA secretion of high $K^+.$ It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.

Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland (흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Rho, Sang-Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.43-55
    • /
    • 1993
  • The present study was conducted to examine the characteristics of histamine on catecholamine secretion in the isolated perfused rat adrenal gland and to clarify the mechanism of its secretory action. Histamine (37.5 to 150 ug) injected into an adrenal vein evoked a dose-dependent significant secretory response of catecholamines (CA) from the rat adrenal gland. However, upon the repeated injection of histamine (150 ug) at 120 min intervals, CA secretion was rapidly decreased after third injection of histamine. Tachyphylaxis to releasing effects of CA evoked by histamine was observed by the repeated administration. The histamine-induced CA secretion was markedly inhibited by the pretreatment with chlorisondamine, diphenhydramine, ranitidine, $Ca^{++}-free$ Krebs solution, nicardipine and TMB-8 while was not affected by pirenzepine. Moreover, the CA secretion evoked by ACh was considerably reduced by the prior perfusion of histamine $(6.8{\times}10^{-5} M)$ for 30 min. These experimental data suggest that histamine causes secretion of CA in a calcium dependent manner from the perfused rat adrenal gland and that its secretory effect is mediated through activation of both $H_1-$ and $H_2-histaminergic$ receptors located in adrenal medulla, which may be associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Influence of Bromocriptine on Release of Norepinephrine and Epinephrine Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Lee, Seung-Il;Kang, Moo-Jin;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • The present study was conducted to examine the effects of cholinergic stimulation and membrane depolarization on secretion of epinephrine (EP) and norepinephrine (NE) in the perfused model of the rat adrenal gland and to investigate the effect of bromocriptine on secretion of EP and NE evoked by these secreta-gogues. Acetylcholine (ACh, 5.32 mM), high $K^{+}$(56mM), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP, 100 $\mu$M for 2 min), (3-(m-cholro-phenyl-carbamoyl-oxy)-2butynyl trimethyl ammonium chloride (McN-A-343, 100 $\mu$M for 2 min), cyclopiazonic acid (10 $\mu$M for 4 min) and methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) -pyridine-5-carboxylate (Bay-K-8644, 10 $\mu$M for 4 min) evoked a 1.3~5.3-fold greater secretion of EP than NE in the perfused rat adrenal gland. The perfusion of bromocriptine (1-10 $\mu$M) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in secretion of EP and NE evoked by ACh, high $K^{+}$, DMPP, and McN-A-343. Moreover, under the presence of bromocriptine (1~10 $\mu$M), releasing responses of EP and NE evoked by cyclopiazonic acid and Bay-K-8644 were also greatly reduced. Taken together, these results suggest that cholinergic stimulation and membrane depolarization enhance more release of EP than NE in the perfumed rat adrenal medulla, and that bromocriptine inhibits the release of EP and NE evoked by stimulation of cholinergic receptors as well as by membrane depolarization. It seems that this inhibitory effect of bromocriptine is associated with inhibition of calcium channels through activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells.lls.

  • PDF

Identification of Steroidogenic Acute Regulatory Protein mRNA in the Rat Ovary and Adrenal G land (흰쥐 난소 및 부신에서 Steroidogenic Acute Regulatory Protein mRNA의 발현에 관한 연구)

  • 김명옥
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 1998
  • The synthesis of steroid hormone starts from cholesterol. Steroidogenic acute regulatory protein(StAR) transfers cholesterol acutely from the outer mitochondrial membranes to the inner in the early step of steroidogenesis. Many kinds of steroid hormones are mainly synthesized in adrenal grand, ovary and testis. The purpose of this study is to determine the distribution of StAR mRNA in the rat ovary and adrenal gland and to confirm the functions of StAR in these organs. In the ovary, StAR mRNAs were strongly expressed in the corpus luteum, where progesterone is synthesized, and these were weakly expressed in the theca layer of follicles, where androgen is synthesized. However, StAR mRNAs were not detected in the estrogen producing granulosa cells of growing follicles. In the corpus luteum, StAR mRNAs were strongly loclized in the zona fasciculata and zona reticularis, where glucocorticoid is mainly synthesized. StAR mRNAs were weakly expressed in the zona gromerulosa, where mineralcorticoid is synthesized. StAR mRNAs were not detected in the adrenal medulla. In our results, StAR mRNAs were expressed differentially in the steroidogenic cells of ovary and adrenal gland according to the types of steroid hormones, and the statges of corpus luteum development. We conclude that StAR is involved in the steroidogenesis at the very early step of steroid synthesis cascade.

  • PDF

Influence of Strychnine on Catecholamine Release Evoked by Activation of Cholinergic Receptors from the Perfused Rat Adrenal Gland

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Oh, Song-Hoon;Kim, Il-Sik;Lee, Bang-Hun;Cho, Seong-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The present study was attempted to investigate the effect of strychnine on catecholamine (CA) secretion evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland. The perfusion of strychnine $(10^{-4}\;M)$ into an adrenal vein for 20 min produced great inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min)$ and McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ but did not alter CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Strychnine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded simultaneously with strychnine $(10^{-4}\;M)$ and glycine (an agonist of glycinergic receptor, $10^{-4}\;M),$ CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered to some extent when compared with those evoked by treatment with strychnine only. However, CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$ was not affected. Taken together, these results demonstrate that strychnine inhibits greatly the CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does not affect that by membrane depolarization. It is suggested that strychnine-sensitive glycinergic receptors are localized in rat adrenal medullary chromaffin cells.

  • PDF