• Title/Summary/Keyword: Adrenal Cortex Hormones

Search Result 15, Processing Time 0.027 seconds

Platelet-rich plasma versus corticosteroid injections for rotator cuff tendinopathy: a comparative study with up to 18-month follow-up

  • Annaniemi, Juho Aleksi;Pere, Juri;Giordano, Salvatore
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.1
    • /
    • pp.28-35
    • /
    • 2022
  • Background: Given the complications involved in corticosteroid (CS) injections, subacromial platelet-rich plasma (PRP) injections may provide a valid alternative to CS in the treatment of rotator cuff (RC) tendinopathy. Methods: We retrospectively reviewed a total of 98 patients affected by RC tendinopathy who were treated with either subacromial injection of PRP or CS. The PRP group received three injections of autologous PRP at 2 weeks interval, and the CS group received one injection of CS. The Western Ontario Rotator Cuff Index (WORC) was the primary outcome measure, while the secondary outcome measures were the visual analog scale (VAS), range of motion (ROM), and need for cuff repair surgery, which were analyzed at intervals of 6, 12, and 18 months. Results: A total of 75 patients were included in the analysis (PRP, n=35; CS, n=40). The mean follow-up for PRP was 21.1±8.7 months and for CS was 33.6±16.3 months (p<0.001). Both groups showed improvement in WORC, VAS, and ROM. No significant differences were detected between the two groups in any of the primary (WORC) or secondary outcomes over 6, 12, and 18 months (all p>0.05). No adverse events were detected. Conclusions: Both treatments improved patient symptoms, but neither resulted in a significantly better outcome in this series of patients. PRP can be a safe and feasible alternative to CS, even at long-term follow-up, to reduce local and systemic effects involved with CS injections.

Systemic Corticosteroid Treatment in Severe Community-Acquired Pneumonia Requiring Mechanical Ventilation: Impact on Outcomes and Complications (기계환기가 요구된 중증 지역사회획득 폐렴에서 전신 스테로이드의 투여가 예후와 합병증의 발생에 미치는 영향)

  • Lee, Seung-Jun;Lee, Seung-Hun;Kim, You-Eun;Cho, Yu-Ji;Jeong, Yi-Yeong;Kim, Ho-Cheol;Lee, Jong-Deog;Kim, Jang-Rak;Hwang, Young-Sil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • Background: This study is to evaluate the effect of systemic corticosteroid on the clinical outcomes and the occurrence of complications in mechanical ventilated patients with severe community-acquired pneumonia (CAP). Methods: We retrospectively assessed the clinical outcomes and complications in patients with severe CAP admitted to ICU between March 1, 2003 and July 28, 2009. Outcomes were measured by hospital mortality after ICU admission, duration of mechanical ventilation (MV), ICU, and hospital stay. Complications such as ventilator associated pneumonia (VAP), catheter related-blood stream infection (CR-BSI), and upper gastrointestinal (UGI) bleeding during ICU stay were assessed. Results: Of the 93 patients, 36 patients received corticosteroids over 7 days while 57 patients did not receive corticosteroids. Age, underlying disease, APACHE II, PSI score, and use of vasopressor were not different between two groups. In-hospital mortality was 30.5% in the steroid group and 36.8% in the non-steroid group (p>0.05). The major complications such as VAP, CR-BSI and UGI bleeding was significantly higher in the steroid group than in the non-steroid group (19.4% vs. 7%, p<0.05). The use of steroids and the duration of ICU stay were significantly associated with the development of major complications during ones ICU stay (p<0.05). Conclusion: Systemic corticosteroid in patients with severe CAP requiring mechanical ventilation may have no beneficial effect on clinical outcomes like duration of ICU stay and in-hospital mortality but may contribute to the development of ICU acquired complications.

Effects of Macrolide and Corticosteroid in Neutrophilic Asthma Mouse Model

  • An, Tai Joon;Rhee, Chin Kook;Kim, Ji Hye;Lee, Young Rong;Chon, Jin Young;Park, Chan Kwon;Yoon, Hyoung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.1
    • /
    • pp.80-87
    • /
    • 2018
  • Background: Asthma is a disease of chronic airway inflammation with heterogeneous features. Neutrophilic asthma is corticosteroid-insensitive asthma related to absence or suppression of $T_H2$ process and increased $T_H1$ and/or $T_H17$ process. Macrolides are immunomodulatory drug that reduce airway inflammation, but their role in asthma is not fully known. The purpose of this study was to evaluate the role of macrolides in neutrophilic asthma and compare their effects with those of corticosteroids. Methods: C57BL/6 female mice were sensitized with ovalbumin (OVA) and lipopolysaccharides (LPS). Clarithromycin (CAM) and/or dexamethasone (DXM) were administered at days 14, 15, 21, 22, and 23. At day 24, the mice were sacrificed. Results: Airway resistance in the OVA+LPS exposed mice was elevated but was more attenuated after treatment with CAM+DXM compared with the monotherapy group (p<0.05 and p<0.01). In bronchoalveolar lavage fluid study, total cells and neutrophil counts in OVA+LPS mice were elevated but decreased after CAM+DXM treatment. In hematoxylin and eosin stain, the CAM+DXM-treated group showed less inflammation additively than the monotherapy group. There was less total protein, interleukin 17 (IL-17), interferon ${\gamma}$, and tumor necrosis factor ${\alpha}$ in the CAM+DXM group than in the monotherapy group (p<0.001, p<0.05, and p<0.001). More histone deacetylase 2 (HDAC2) activity was recovered in the DXM and CAM+DXM challenged groups than in the control group (p<0.05). Conclusion: Decreased IL-17 and recovered relative HDAC2 activity correlated with airway resistance and inflammation in a neutrophilic asthma mouse model. This result suggests macrolides as a potential corticosteroid-sparing agent in neutrophilic asthma.

Comparison of ultrasound-guided subacromial corticosteroid and ozone (O2-O3) injections in the treatment of chronic rotator cuff tendinopathy: a randomized clinical trial

  • Merve Orucu Atar;Nurdan Korkmaz;Sefa Gumruk Aslan;Ozge Tezen;Sinem Uyar Koylu;Yasin Demir;Serdar Kesikburun
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.128-136
    • /
    • 2023
  • Background: The authors aimed to compare the effects of a one-time ultrasound (US)-guided subacromial corticosteroid injection and three-time ozone (O2-O3) injection in patients with chronic supraspinatus tendinopathy. Methods: Participants were randomly assigned to the corticosteroid group (n = 22) or ozone group (n = 22). Injections in both groups were administered into subacromial bursa with an US-guided in-plane posterolateral approach. Primary outcome measure was the change in the Western Ontario Rotator Cuff Index (WORC) score between baseline and 12-weeks post-injection. Secondary outcome measures included visual analog scale and Shoulder Pain and Disability Index scores. Assessments were recorded at baseline, and 4-weeks and 12-weeks post-injection. Results: Forty participants completed this study. Based on repeated measurement analysis of variance, a significant effect of time was found for all outcome measures in both groups. Both the groups showed clinically significant improvements in shoulder pain, quality of life, and function. Baseline, 4-week post-injection, and 12-week post-injection WORC scores (mean ± standard deviation) were 57.91 ± 18.97, 39.10 ± 20.50 and 37.22 ± 27.31 in the corticosteroid group, respectively and 69.03 ± 15.89, 39.11 ± 24.36, and 32.26 ± 24.58 in the ozone group, respectively. However, no significant group × time interaction was identified regarding all outcome measures. Conclusions: Three-time ozone injection was not superior to a one-time corticosteroid injection in patients with chronic supraspinatus tendinopathy. It might be as effective as corticosteroid injection at 4-weeks and 12-weeks post-injection in terms of relieving pain and improving quality of life and function.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.