• Title/Summary/Keyword: Admixture

Search Result 1,156, Processing Time 0.034 seconds

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

Optimizing cement replacement with rice husk ash and eggshell ash for enhanced mechanical properties of geopolymer concrete: A comparative study with and without admixture

  • Yashwanth Pamu;Venkata Sarath Pamu;Praveen Samarthi;Mahesh Kona
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.707-724
    • /
    • 2024
  • This paper proposes a study of cement replacement with rice husk ash (RHA) and eggshell ash (ESA) for enhanced mechanical properties of geopolymer (GP) concrete with and without admixture. The main objective is to investigate the mechanical properties of GP with various replacement levels of Pozzolana Portland cement by RHA and ESA. The GP resistance to durability is examined and impact of ash materials on concrete's durability performance is determined. The environmental benefits of using agricultural waste materials in GP manufacturing minimize cement usage and CO2 emissions. The goal is to assess value of RHA-ESA of building material, paving stones for structures to lessen environmental impact. The novelty lies in use of ESA and RHA as partial replacements for cement and investigation of admixtures to enhance concrete properties, and reduce environmental impact. The research contributes by introducing a novel approach to reducing cement consumption by using ESA and RHA to address environmental concerns. It also explores the potential benefits of admixtures improving concrete performance and reducing environmental pollution. A study is carried with and without impacts of admixture to find compressive strength of GP cubes. The cement has been replaced by RHA and ESA in the range of (2.5%+7.5%, 5%+5%, 7.5%+2.5) by weight of cement for M20 mix. The compressive strength (CS) and split tensile strength (STS) at 7days, 14 days and 28 days is obtained as 21 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 24 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 28 N/mm2 at 7.5%RHA+2.5%ESA and 2.8 at 7.5%ESA respectively with normal curing condition.

Mechanical Properties And Chlorde Penetration Resistance of Shotcrete according to Mineral Admixture Types and Supplemental Ratio (광물성 혼화재료의 종류 및 혼입율에 따른 숏크리트의 역학적 특성 및 염해 저항성)

  • Han, Seung-Yeon;Yun, Kyong-Ku;Nam, Kyeong-Gung;Lee, Kyeo-Re;Eum, Young-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4960-4968
    • /
    • 2015
  • In this study to improve the chloride durability of the shotcrete structure depending on types and contents of mineral admixture chloride resistance was evaluated by NT BUILD 492 of european test standards. It was also evaluated with the mechanical properties such as static strength and chloride penetration resistance. For shotcrete mixed crushed stone aggregate of the maximum size 10mm of coarse aggregates was produced. Based on 28days compression strength the variable mixed with 15% silica fume showed the highest strength in 67.55MPa. As the content of fly ash and blast furnace slag increased, the strength lowered. In the chloride penetration resistance test, OPC showed "high grade" and In the case of admixture, the penetration resistance tended to increase in all variables except the fly ash. In order to evaluate the service life, the accelerated chloride penetration test was conducted by the standards of KCL, ACI, FIB. Test results were obtained with the lowest spreading factor in a variable mixed with silica fume of 15%. At the KCI standards, It was found to have a service life of about 65 years and at the FIB standards, It was found to have a service life of 131 years. Among standards, the service life of KCI standard in all of the variables was evaluated as the lowest.

Effects of the Curing Temperature on the Strength of Mortar added Admixtures (양생온도(養生溫度)가 혼화재(混和材)를 사용(使用)한 Mortar의 강도(强度)에 미치는 영향(影響))

  • Kang, Sin-Up;Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.214-224
    • /
    • 1976
  • This research was attempted as one of studies on the strength of mortar added admixtures at different curing temperatures. Variations of curing temperature to. test compressive strength, tensil strength and bending strength were $20^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$ and these results were summarized as follow : In strength of mortar added briquette ash, the compressive strength was increased: 1.58 percent, the tensile strength 0.96 percent, and the bending strength 1.26 percent compared with standard strength, by increasing one degree of celsius temperature. Also in strength of mortar added fly ash, the compressive strength increased on the average 1.3 percent, the tensile strength 0.99 percent, and the bending strength 1.18 percent at the above conditions. In case of using fly ash as admixture, maximum compressive strengths was attained at the level of 25 percent of fly ash, maximum tensile strength at the level of 20 percent of fly ash, and maximum bending strength at the level of 20 percent of fly ash. In case of using briquette ash, maximum compressive strength was attained maximum strength at 20 percent of the admixture, maximum tensile strength at the level of 15 to 20 percent of admixture and maximum bending strength at the level of 20 percent of admixture. Although addition of briquette ash was less effective in increasing the strength compared with the addition of fly ash, briquette ash might be used as one of admixtures because the control of curing temperature might affect in getting the required practical strength.

  • PDF

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.

A study on the Effect of Calcium Chloride Admixture on strengths of Concrete (혼화제인 염화칼슘이 콘크리트 강도에 미치는 영향에 관한 연구)

  • Jun, Hyun-Woo;Lim, Chong-Kook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2419-2425
    • /
    • 1971
  • In many cold weather concrete constructison jobs calcium chloride $CaCl_2$ can be used safely as an accelerating admixture. For producing satisfactory concrete during cold weather calcium chloride is used to develop the level of strength required in a shorter period by obtaining higher early strength, the resulting in crease in heat of hydration. In this paper, to get adequated data and information of the effect on strength of concrete in using calcium chloride as an accelerating admixture, Portland cement (Type I), High-early-strength cement(Type II) and Pozzolans cement with certain 1.5 percentage of calcium chloride by weight of the cement were tested. As the result of this experiment, followings were founded: 1. At the 1.5 percent of calcium chloride cement ratio, the early strength was accelerated to the highest level, and some 1.5 percent of calcium chloride cement ratio was suitable for the stabilization of the concrete structures. 2. For Some 50 percent of Water Cement ratio was suitable, making good Concrete in the Cold weather by admixture of Calicum Chloide. 3. The concrete of Pozzorans cement in early strength was weak but that in later rised by degree. 4. As abtaining higher early strength the curing period can be reduced, but the finishing work should be done as early as possible.

  • PDF