• Title/Summary/Keyword: Admissible Estimation

Search Result 11, Processing Time 0.016 seconds

Stochastic Model for Unification of Stereo Vision and Image Restoration (스테레오 비젼 및 영상복원 과정의 통합을 위한 확률 모형)

  • Woo, Woon-Tak;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.37-49
    • /
    • 1992
  • The standard definition of computational vision is a set of inverse problems of recovering surfaces from images. Thus the common characteristics of the most early vision problems are ill-posed. The main idea for solving ill-posed problems is to restrict the class of admissible solutions by introducing suitable a priori knowledge. Standard regurarization methods lead to satisfactory solutions of early vision problems but cannot deal effectively and directly with a few general problems, such as discontinuity and fusion of information from multiple modules. In this paper, we discuss limitations of standard regularization theory and present new stochastic method. We will outline a rigorous approach to overcome part of ill-posedness of image restoration, edge detection, and stereo vision problems, based on Bayes estimation and MRF(Markov random field) model, that effectively deals with the problems. This result makes one hope that this framework could be useful in the solution of other vision problems.

  • PDF