• Title/Summary/Keyword: Adjuvants

Search Result 125, Processing Time 0.034 seconds

Understanding the Roles of Host Defense Peptides in Immune Modulation: From Antimicrobial Action to Potential as Adjuvants

  • Ju Kim;Byeol-Hee Cho;Yong-Suk Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.288-298
    • /
    • 2023
  • Host defense peptides are expressed in various immune cells, including phagocytic cells and epithelial cells. These peptides selectively alter innate immune pathways in response to infections by pathogens, such as bacteria, fungi, and viruses, and modify the subsequent adaptive immune environment. Consequently, they play a wide range of roles in both innate and adaptive immune responses. These peptides are of increasing importance due to their broad-spectrum antimicrobial activity and their functions as mediators linking innate and adaptive immune responses. This review focuses on the pleiotropic biological functions and related mechanisms of action of human host defense peptides and discusses their potential clinical applications.

Antigen Delivery Systems: Past, Present, and Future

  • Hyun-Jeong Ko;Yeon-Jeong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.370-387
    • /
    • 2023
  • The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.45-45
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, RAL increased the production of immunostimulatory mediators and phagocytotic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activation of JNK and PI3K/AKT signaling was reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

  • PDF

Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights

  • Tae Hyun Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.276-285
    • /
    • 2024
  • Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.

Recent Advances in Adjuvant Therapy for Non-Small-Cell Lung Cancer

  • Mi-Hyun Kim;Soo Han Kim;Min Ki Lee;Jung Seop Eom
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • After the successful development of targeted therapy and immunotherapy for the treatment of advanced-stage non-small cell lung cancer (NSCLC), these innovative treatment options are rapidly being applied in the adjuvant setting for early-stage NSCLC. Some adjuvants that have recently been approved include osimertinib for epidermal growth factor receptor-mutated tumors and atezolizumab and pembrolizumab for selected patients with resectable NSCLC. Numerous studies on various targeted therapies and immunotherapy with or without chemotherapy are currently ongoing in the adjuvant setting. However, several questions regarding optimal strategies for adjuvant treatment remain unanswered. The present review summarizes the available literature, focusing on recent advances and ongoing trials with targeted therapy and immunotherapy in the adjuvant treatment of early-stage NSCLC.

Effect of Foliar Sprays of CaCl2 for Improving Fruit Quality of (복숭아 )

  • Kim, Ik-Youl;Kim, Mi-Young;Ru, Jong-Ho;Kim, Min;Lee, Yong-Se;Chang, Tae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.276-283
    • /
    • 2006
  • To evaluate the effectiveness of the foliar spray of calcium on "Baekdo" peach fruit, we carried out experiments in the orchards. The sprays were applied with $CaCl_2\;(Ca:\;400mg.kg^{-1})\;and\;CaCl_2$ with adjuvants (amino acid, $2g.kg^{-1}$; phytic acid, $2ml.kg^{-1}$ and wood vinegar, $2ml.kg^{-1}$) for four times from June 12 through July 4 at weekly intervals. The fruits and leaves were evaluated for Ca content, firmness and incidence of Brown rot caused by Monilinia fructicola at harvest To evaluate fruit quality included Ca content, firmness natural decay during the storage, the fruits were stored at room temperature for 14 days. The Ca content in leaf and fruit flesh at harvest was significantly increased (P=0.05) in $CaCl_2$ + amino acid treatment among $CaCl_2$ treatments. However, there was not significant Ca content in fruit peel. The firmness of flesh increased significantly (P=0.05) in $CaCl_2$ + amino acid treatment. The natural decay (Rhizopus stolonifers) during storage at the room temperature for 14 days, the fruit treated with $CaCl_2$ + wood vinegar exhibited lowest (P=0.05) incidence. Also, the firmness of the fruit during storage was firmer with treated $CaCl_2$ than untreated fruit. In the treatments of $CaCl_2$ + phytic acid and $CaCl_2$ + amino acid, it was possible to reduce incidence of Brown rot caused by M. fructicola most effectively in the field. In addition, inoculation with M. fructicola in fruits was also the most effective treatment for inhibiting disease development in vitro. These results suggested that the foliar spray of $CaCl_2$ with adjuvants increased the content of Ca and firmness of the fruits positively. It also inhibited the natural decay and the Brown rot effectively.

Elucidating Bottlenecks to the Efficient Preparation of AB5-Hexamer Mucosal Adjuvant Protein LTm by Genetic Engineering

  • Liu, Di;Hu, Fabiao;Wang, Wenpeng;Wu, Dong;He, Xiujuan;Zheng, Wenyun;Liu, Haipeng;Ma, Xingyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1461-1471
    • /
    • 2017
  • Escherichia coli heat-labile enterotoxin (LT) and its non-toxic mutant (LTm) are well-known powerful mucosal adjuvants and immunogens. However, the yields of these adjuvants from genetically engineered strains remain at extremely low levels, thereby hindering their extensive application in fundamental and clinical research. Therefore, efficient production of these adjuvant proteins from genetically engineered microbes is a huge challenge in the field of molecular biology. In order to explore the expression bottlenecks of LTm in E. coli, we constructed a series of recombinant plasmids based on various considerations and gene expression strategies. After comparing the protein expression among strains containing different recombinant plasmids, the signal sequence was found to be critical for the expression of LTm and its subunits. When the signal sequence was present, the strong hydrophobicity and instability of this amino acid sequence greatly restricted the generation of subunits. However, when the signal sequence was removed, abundantly expressed subunits formed inactive inclusion bodies that could not be assembled into the hexameric native form, although the inclusion body subunits could be refolded and the biological activity recovered in vitro. Therefore, the dilemma choice of signal sequence formed bottlenecks in the expression of LTm. These results reveal the expression bottlenecks of LTm, provide guidance for the preparation of LTm and its subunits, and certainly help to promote efficient preparation of this mucosal adjuvant protein.

Weed Control Efficacy of the Residues and its Aqueous Extract of Sorghum Shoots (수수 지상부의 부산물과 추출물의 제초활성)

  • Park, Su Hyuk;Won, Ok Jae;Le, Thi Hien;Eom, Min Yong;Hwang, Ki Seon;Hwang, Jae-Bok;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.243-248
    • /
    • 2015
  • This study was conducted to investigate the ability for weed control of the shoot extract of sorghum (Sorghum bicolor (L.) Moench) and developing a sustainable weed management in organic farming. When the dried shoot powder was mixed with soil and treated with 2 cm above the soil surface, the germination for Echinochloa crus-galli, Digitaria cilialis, Abutilon theophrasti and Amaranthus retroflexus was inhibited maxium 40%. The growth inhibition of germinated seedlings in the A. theophrasti and A. retroflexus was maxium 30% while it was less than 30% in the E. crus-galli and D. cilialis. Shoot extracts at rates above $25mg\;ml^{-1}$ was effective to inhibit germination of D. cilialis, A. theophrasti and A. retroflexus. The shoot extract concentration required for 50% of germination inhibition was $60mg\;ml^{-1}$ in the E. crus-galli, while it was less than $10mg\;ml^{-1}$ in the D. cilialis, A. theophrasti and A. retroflexus. For the foliar application, 11 adjuvants were tested at 0.5% and DOS70, TM15 and TDE7 were most effective adjuvants for the shoot extracts. DOS70 was most effective and provided up to 60% of weed control efficacy for the tested four weed species. Though herbicidal efficacy of sorghum shoot was not enough to give a proper weed control, it can be expected that long term use of sorghum shoots can provide gradual decrease in weed seeds and weed density.

Selective Toxicity of Pesticides to the Predatory Mite, Phytoseiulus persimilis and Control Effects of the Two-spotted Spider Mite, Tetranychus urticae by Predatory Mite and Pesticide Mixture on Rose (칠레이리응애에 대한 농약의 선택독성과 장미에서 천적과 농약의 혼용에 의한 점박이응애의 방제효과)

  • 안기수;이소영;이기열;이영수;김길하
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.71-79
    • /
    • 2004
  • Toxicities of 42 pesticides (13 acaricides, 13 insecticides, 13 fungicides and 3 adjuvants) commonly used to control rose insect, mite, and disease pests were evaluated to the two-spotted spider mite, Tetranychus urticae egg and adult, and its predator Phytoseiulus persimilis egg, nymph and adult at the recommended concentration. The effect of density suppression of T urticae by predatory mite and pesticide mixture on the rose in the greenhouses was also investigated. Among 13 acaricides tested, acequinocyl, bifenazate, fenbutatin oxide and spirodiclofen showed much less toxicity to P. persimilis than to T urticae. Among insecticides, acetamiprid, imidacloprid, spinosad, thiamethoxam and acetamiprid+etofenprox showed low toxicity to P. persimilis. and T ruticae. Among 13 fungicides, azoxystrobin, kresoxim-methyl, myclobutanil, nuarimol, triadimefon, triflumizole and oxadixyl+mancozeb had a negligible effect on P. persimilis and T. urticae. Among three adjuvants, cover and siloxane expressed high toxicity, while spreader showed very low toxicity to P. Persimilis. In the greenhouses experiments, the density of T urticae before treatment was 65.3 mites per leaf. However, their density after release about 30 predatory mites per rose abruptly decreased from 3.8 mites at 11th day to zero mite at 20th day. During survey periods, four treatments of fungicides (kresoxim-methyl, myclobutanil, nuarimol, triflumizole) for the control of Sphaerotheca pannosa and one treatment of insecticide (spinosad) the control of Frankliniella occidentalis were applied, and these treatments had no the pesticides had no effect on the predatory mite density. It may be suggested from these results that four acaricides, five insecticides, seven fungicides, and one adjuvant could be incorporated into the integrated T. urticae management system with P. persimilis on rose cultivation.

In vitro Propagation and Ex vitro Rooting of Tectona grandis (L.f ), APNBV-1 Clone

  • Ramesh, Kommalapati;Chandra, Mouli Kalla;Vijaya, Tartte
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • An efficient in vitro plant regeneration system was developed through shoot proliferation from axillary buds of Tectona grandis (L.f), APNBV-1 (Andhra Pradesh North Badrachalam Venkatapuram-1) clone. Multiple shoots of high quality were produced in vitro from axillary bud explants. An average of 4.39 shoots/explant were obtained on Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) benzyl amino purine (BA), kinetin (KN), indole acetic acid (IAA), gibberillic acid ($GA_3$), growth adjuvants casein hydrolysate (CH), adenine sulphate (Ads) and antioxidants ascorbic acid, polyvinyl pyrrollidine (PVP). Eighty five percent of rooting was observed in ex vitro rooting media containing IBA and vermiculite. In ex vitro rooting, single shoots with 2 to 3 nodes were subjected to IBA of different concentrations at different periods of time intervals. Direct rooting in vermiculite at 500 ppm concentration of IBA resulted in 4.3 number of roots with 2 cm length. Minimum response of rooting and length of roots were recorded at 100 ppm concentration of IBA. Planlets were transferred to plastic bags for short acclimatization stage in green house where they survived at 95%.

  • PDF